
!"#$%&#'(!)*+,#-%(./01%(

+2345(67(869:59:;(
!"#! $%&'()*+&,(%-"""-!!
!".! /01&23-4%)-/(5&64'2-728*,'232%&1-""-9!
"#$#%! &'()*+,-.!/01+(2!###!3!
"#$#$! 4()5!###!3!
"#$#"! 678!##!9!
"#$#3! :;-<()+!##!=!
"#$#9! 6>;1+1:),'+!##!=!
"#$#=! 7*?(!###!=!
"#$#@! /AB<()1,;-!##!@!
"#$#C! D!:;2',5()!###!@!
"#$#E! 70/FG!###!@!
"#$#%H! 2'!I7(+*J*+*!4*)1()K!###!@!
"#$#%%! L,'!##!C!
"#$#%$! /1>!##!C!

!"!! $%1&4::,%;-&<2-/(5&64'2-""-=!
"#"#%! M-1+*55,-.!*-J!D;-N,.A),-.!70/FG!##!C!
"#"#$! M-1+*55*+,;-!*-J!O'.)*J(!###!%H!

!"9! >*1&(3,?,%;-/<4@2A4B-""-#!!
"#3#%! P(.,;-Q/'(:,N,:!R,5(1!##!%"!
"#3#$! D;-N,.A)*+,;-!R,5(1!###!%"!
"#3#"! S1"H!6),J1!##!%"!
"#3#3! /,+(!T2'5,N,:*+,;-!8*B5(1!###!%3!
"#3#9! 77M!/,+(!T2'5,N,:*+,;-!8*B5(1!##!%9!
"#3#=! 4*11U;)J1!##!%9!
"#3#@! V(B!4*.(1!##!%9!
"#3#C! TA+;2*+,;-!##!%=!
"#3#E! &<()),J,-.!+>(!TA+;2*+,;-!I,-'A+W1;A):(#+X+!*-J!,-'A+W+,2(1+*2'Y+(X+#+X+K!#################!%@!
"#3#%H! 6);A-JQ7;+,;-!4)(J,:+,;-!Z[A*+,;-!I674ZK\!M-+(-1,+0!4)(J,:+,;-!Z[A*+,;-!IM4ZK\!*-J!
6);A-JQ7;+,;-WM-+(-1,+0!D;-<()1,;-!Z[A*+,;-!I67MDZK!7;JA5(1!###!%@!

!"C! 7*%%,%;-/<4@2A4B-"""-.!!
"#9#%!]*+*!],)(:+;)0!/+)A:+A)(!##!$"!
"#9#$! D)(*+,-.!+>(!7*'1!###!$"!
"#9#"! 8>(!4);:(11,-.!/([A(-:(\!!"#$%\!*-J!S()1,;-,-.!###!$3!
"#9#"#%! 1>*?(#:;-N!##!$3!
"#9#"#$! 8>(!4);:(11,-.!/([A(-:(!*-J!1>*?(#:;-N!##!$3!
"#9#"#"! R5*.1\!S()1,;-1\!*-J!+>(!70/FG!]*+*B*1(!###!$=!
"#9#"#3! 4*11U;)J1!*-J!20JB#:;-N!##!"H!
"#9#"#9! ^*:?,-.!A'!+>(!70/FG!J*+*B*1(!##!"%!

"#9#3! /'(:,*5!M11A(1!V>(-!PA--,-.!/>*?(7*'!###!"%!
"#9#3#%! T!_;+(!TB;A+!4);.)*2!R5*.1!###!"%!
"#9#3#$! O1,-.!O1()Q1A''5,(J!Z1+,2*+(1!##!"$!
"#9#3#"! T!_;+(!TB;A+!Z1+,2*+(1!*-J!R5*..(J!/+*+,;-1!###!""!
"#9#3#3! T!_;+(!*B;A+!R,-,+(!R*A5+1!##!""!
"#9#3#9!],)(:+,<,+0!##!"3!
"#9#3#=! /:(-*),;1!##!"9!

 2

"#9#3#@! 6(++,-.!`(5'!##!"=!
!"D! >(33(%-E'(F:231-""-!D!
"#=#%! />*?(!N5*.1!J*+*B*1(!:*A1(1!:;-NA1,;-!##!"=!
"#=#$! R,5(1!,-!,-:;))(:+!N;)2*+a!###!"=!

!"G! HAI-J('34&1-,%-/<4@2A4B-"""-!G!
"#@#%! TB;A+!b7G!##!"@!
"#@#$! />*?(7*'!b7G!R,5(1!##!"C!
"#@#"! P(+),(<,-.!]*+*!N);2!*!]*+*B*1(!###!3"!
"#@#3! ZX+()-*5!]*+*!b7G!R,5(1!###!3"!

!"=! K2L2:(B32%&-A()2:-""-9C!
!"M! N4F:21-""-9C!
!"#O! 7252'2%+21-"""-C9!

 3

3.1 Introduction
ShakeMap is a collection of programs, largely written in the Perl programming language. These
programs are run sequentially to produce ground motion maps (as PostScript and JPEG images,
GIS files, etc.) as well as web pages and email notifications. In addition to Perl, a number of
other software packages are used. In keeping with our development philosophy, all additional
software required by ShakeMap is freely available. This chapter explains what is required to
install and run ShakeMap.

This version of the Software Guide is peculiar to ShakeMap V3.5 and later.

The following conventions are used throughout this Guide:

Courier Text & prompt (%) User Input, commands, and screen

displays
< brackets > User-assigned or environment-specific <Variables>
italics ShakeMap and non-ShakeMap programs other files

and directories
-italics required or optional program flag
‘single’ or “double quotes” “file” or “subdirectory” names
http://www.web.org Web Page URL

 4

3.2 System and Software Requirements
Before ShakeMap can be installed and run, a number of other software packages and Perl
modules must be installed. This required software is described in the sections that follow.

If you intend to install and operate ShakeMap, please see the section Getting Help and sign up
for the shake-dev mailing list. The mailing list is the main channel of communication between
ShakeMap operators and developers.

3.2.1 Operating System
ShakeMap Version 3.5 was developed and tested on systems running the MacOS X and Linux.
Version 3.0 and earlier were developed for the SPARC version of Solaris v2.6, v2.7 and v2.8
(i.e., SunOS 5.6, 5.7, and 5.8). Version 3.0 and higher of ShakeMap will run on FreeBSD, and
v3.2 and later support Linux. ShakeMap will also run under various versions of MacOS X,
though we can only effectively support the version our developer uses (currently 10.6.8). In this
guide, we have tried to make note of any differences among Linux, Solaris, and FreeBSD
installations of ShakeMap. We have never tested ShakeMap v3.5 with the SPARC version of
Solaris, but we expect that it would work. For any other OS, you will be blazing your own trail.
In particular, many of the programs would probably work under another OS, but transfer might
be problematic. In addition, the makefiles we use are very Unix-like and use GNU-specific
extensions (we get around this on FreeBSD by using gmake, which supports the extensions we
use).

Warning: We have had several reports of significant problems running ShakeMap on Ubuntu
Linux. At this point we do not recommend Ubuntu, and cannot support it. If that is your platform
of choice, you are on your own.

3.2.2 Perl
Perl should be pre-installed on any system upon which ShakeMap will run, but you may wish to
upgrade it (Perl 5.8.0 is known to cause problems, so definitely upgrade if that is your system’s
default Perl). We are using version 5.8.5, 5.8.7, 5.8.8 and 5.10.0. While we think most versions
of Perl will work, there have been reports of problems with specific sub-versions. Whether these
were problems with Perl itself, or with some combination of Perl and the modules used, we do
not know. If you run into problems with specific Perl statements, please let us know. If there are
problems with module compatibility, try a different (usually earlier) version of the module, and
let us know what the problem was and what version of the module was problematic.

Perl may be obtained for free from several sources, and is usually included by default on most of
the supported systems. Visit www.perl.com to find a download point for your particular OS.

ShakeMap also uses several Perl modules that may be obtained from CPAN (see www.cpan.org
for CPAN archives). For Linux users, most of these modules are available via the package
manager system. For FreeBSD users, most of these modules are available for automated
installation via the ports collection. We list here the versions of the modules we are using and
that are therefore known to work (at least on our system), your mileage may vary. You may use

 5

the most recent version of modules, or the easiest to get and install, but if you run into problems,
start backing the suspect modules out to earlier versions. Modules:

Module Name Version
libwww-perl (5.69)
Bundle::LWP 1 See footnote #1
DBD::mysql (4.20.0)
HTML::Template (2.900)
XML::Parser (2.400) Requires expat be installed2
XML::Writer (0.606)
enum (1.016)
Time-modules (2006.81.400) Installing module Time::CTime will get this package
Event (1.18)
Mail::Sender (0.8.16)
DBD::Oracle 3 (1.14) See footnote #3
Config::General (2.500)
XML::Simple (2.180)
Time::y2038 (20100403) Has numerous dependencies.

The version numbers listed above are known to work with V3.5 of ShakeMap. Other versions
may work, but we can’t guarantee it.

3.2.3 GMT
ShakeMap requires GMT, The Generic Mapping Tools developed by Paul Wessel and Walter
H.F. Smith. GMT is freely available from www.soest.hawaii.edu/gmt. ShakeMap V3.5 is
compatible with GMT 4.3, 4.4, and 4.5 (up through 4.5.7). Other versions are not recommended.
In particular, versions newer than 4.5.7, when they become available, may not work. While the
GMT web site usually gives you the latest stable version, the mirror sites usually have older
versions available.

GMT requires the NetCDF software as part of its install process. The GMT installation
documentation will tell you how to obtain and install NetCDF.

1 This is a prerequisite for libwww-perl. If you use a system like ‘ports’ or the CPAN module to
install libwww-perl, the LWP bundle is automatically installed, too. If you do the installation
manually, you need to install Bundle::LWP before libwww-perl.

2 Expat can be downloaded from http://sourceforge.net/projects/expat/. Configuration and
installation are explained in the expat README. Expat will be automatically installed if you
install XML::Parser with an automatic tool like port or cpan.

3 DBD::Oracle is needed to connect to an Oracle database. It is used by programs like db2xml,
eq2xml, etc. If you are using a database other than Oracle, you will need to get a different driver
(e.g., DBD::Sybase). If you are providing data to ShakeMap through some other mechanism, you
won't need this module.

 6

IMPORTANT: When installing GMT, NetCDF, and ShakeMap, it is important that they all are
compiled with the same compiler and compiler options. If you are pulling pre-compiled packages
from various locations, you may get incompatibilities and ShakeMap will NOT work correctly.
Most of the Linux distributions have package installers that use the same compiler that is
installed by default, so it usually works. But if you have problems, you may need to compile
GMT and NetCDF from source.

Note that when installing GMT, you need to get and install the full-resolution coastline data.
This is an option in the GMT installation scripts.

If you upgrade your version of GMT, make sure to edit <shake_home>/include/macros to reflect
your changes, and then go to <shake_home> and run ‘make veryclean’ and ‘make’ to update all
of your code. Test thoroughly.

3.2.4 convert
There are two recommended ways within the ShakeMap program genex to convert the PostScript
output from the GMT programs to JPEG and PNG:

(1) Use convert from ImageMagick. The program can be obtained from
www.imagemagick.org. It is free. Ghostscript (see below) is required for convert to
process PostScript. We are using versions 5.5.7 and 6.2.8 of convert. Make sure that your
installation of convert can convert PostScript to JPEG and PNG before proceeding with
the ShakeMap installation. If you use convert, set the genex.conf parameter “convert” to
the path to your convert executable.

(2) Use gm from GraphicsMagic, available from http://www.graphicsmagick.org. It, too, is
free. Click on the “Installation” link for a list of sites from which to obtain necessary
third-party software. You will need, at a minimum, Ghostscript, ZLIB, LIBPNG, and the
Independent JPEG Group’s JPEG software. Version 1.3.12 of gm seems to work. Other
versions will probably work as well, but have not been extensively tested. If you use gm,
set the genex.conf parameter “convert” to the path to gm followed by the string “convert”
(e.g., “convert : /usr/local/bin/gm convert”).

gm is recommended on Linux, where it makes better-looking text.

3.2.5 Ghostscript
Ghostscript is used by convert and gm for conversion of PostScript to JPEG and PNG. We use
various versions of Aladdin Ghostscript (7.07, 8.00). Use whatever version is recommended for
your version of convert. The software is free and can be downloaded through sourceforge:
http://sourceforge.net/projects/ghostscript.

3.2.6 Make
On Linux, GNU make will likely be your default. On Solaris, use Sun’s make or GNU make
(http://directory.fsf.org/GNU/make.html).

 7

On FreeBSD, you will want to get gmake, the GNU make from
http://directory.fsf.org/GNU/make.html. This is easily installed (as are many of the Perl
modules) through the ports collection.

The ‘install’ program on Linux is defined as /usr/bin/install and on Solaris /usr/ucb/install.
Please double check your ‘macros’ file in <shake_home>/include after you run make in
<shake_home>/install to be sure that the correct version of ‘install’ is selected.

3.2.7 Subversion
You will need the Subversion (SVN) client code in order to check out a version of the ShakeMap
code base. The code is freely available for many, many operating systems from
http://subversion.tigris.org/ and elsewhere. Many systems come with the SVN client already
installed or available with the OS distribution. You do not need the server code, only the client.
Using SVN, you will be able to receive code updates much more easily than in the past.

3.2.8 C compiler
You will need a C compiler. On Solaris, we use Sun’s, and on Linux and FreeBSD, we use
GNU’s (again, use the ports collection to install gcc). If you will use gcc on Solaris, you can get
it from (http://directory.fsf.org/GNU/gcc.html). In either case, you will specify the compiler and
compiler flags in ‘<shake_home>/include/macros.’

It is important that the compiler you select is the same one used to compile GMT and the
NetCDF package, so be careful if you get pre-compiled versions of these packages. In a perfect
world, this restriction would not exist, but this world is far from perfect.

3.2.9 MySQL
Please follow the instructions in the section Installing and Configuring MySQL, below, for
configuring MySQL, and for converting existing pre-V3.0 ShakeMap databases to MySQL.

3.2.10 mp (Metadata Parser)
ShakeMap produces FGDC-compliant metadata and provides it as text, HTML and XML on the
downloads page. Producing the HTML and XML requires the program ‘mp’ (which may be
obtained from http://geology.usgs.gov/tools/metadata/tools/doc/mp.html). Once you have
installed ShakeMap (see installation instructions, below), download, gunzip, and untar the MP
software. Pre-compiled binary is available for Linux. For Solaris, cd to the tools/src directory
and do the following:

 % mkdir ../bin
 % make –f Makefile.sun all

On FreeBSD, copy the file <shake_home>/util/Makefile.bsd to <metadata_home>/tools/src, then
do:

 % make –f Makefile.bsd all

 8

In previous versions of ShakeMap, mp was installed (or linked to) in <shake_home>/bin,
however in the current version, the path to mp is configured as a parameter in genex.conf.

3.2.11 Zip
Zip is not required, but almost all installations will want to install it. It is required if you wish to
make GIS shape files (using the ‘-shape’ flag to ‘genex’), or if you use the ‘-zip’ option with
‘genex’ to compress your PostScript output (recommended to save space and transfer time to
your web servers).

Zip allows the creation of compressed archives. It may be downloaded from http://www.info-
zip.org (though, again, FreeBSD users can find it in the ports collection). Once you have
installed zip on your system, there is a configuration parameter zip in ‘genex.conf’ that should be
given the full path to the zip executable. Again zip is only required if genex is run with either the
–shape option or the –zip option, but almost everyone will want to use both of those options.

3.2.12 Ssh
The secure shell, ssh, should be installed if you intend to transfer ShakeMap files via the ‘scp’
protocol. This is currently required, for example, if you will be transferring your web pages to
the USGS servers. If ssh is not available on your system, please see your system administrator –
he or she will want to make sure the installation is done correctly and in accordance with your
network security policy.

3.3 Installing the Software

3.3.1 Installing and Configuring MySQL
Download MySQL from www.mysql.com. Binary distributions are available for Linux, Solaris
8, 9, and 10. If you are using an earlier version of Solaris, you may have to get the source and do
a compile or you can get a pre-compiled, though older, version of MySQL from
www.sunfreeware.com. If you are using FreeBSD, MySQL is, as usual, found in the ports
collection and installation is almost trivial. We are using versions 5.0.18 and 4.0.21, though
newer versions will probably work, as well.

We will not describe the MySQL installation process. Extensive documentation is available both
online and in the distribution. You will need to get the MySQL server (mysqld) running, and set
up an init script to start the server when the machine boots. Be especially careful to follow the
instructions for setting a root user password and making sure your MySQL server is secure. You
will be asked to do something like:

 % cd /usr/local/mysql
 % ./bin/mysqladmin -u root password 'your_root_password'

or:

 % ./bin/mysql -p
 Password:
 (give an empty password)

 9

 ...
 mysql> set password for

 -> root@your_machine=PASSWORD('your_root_password');

(The following instructions assume that your MySQL server is running on the same machine that
you run ShakeMap. This configuration is not required; you may run MySQL on another
machine, but you will have to modify some of the commands given below to include a host
name. See the MySQL documentation for more information. Also, keep in mind that your
ShakeMap system will only be as reliable as the combined reliability of these two machines (i.e.,
consider providing backup power for both machines, their LAN router, etc.).)

The first step is to create a database and a user. Connect to the MySQL server as root. To
connect and be prompted for a password:

% mysql -u root –p
Password:
(type your password and hit ‘return’)
…
mysql>

Now establish the shake database (we call it 'shakemap,’ but you can call it anything you want as
long as that is the name you use throughout the installation and configuration process):

 mysql> create database shakemap;

Now give the users permission to modify the table. Here we give the user ‘shake’ (mysql
password 'shake_password') the needed permissions:

 mysql> grant select,insert,update,delete,create,drop,alter
 -> on shakemap.*
 -> to shake@localhost
 -> identified by 'shake_password';
 Query OK, 0 rows affected (0.00 sec)

Below we have listed the above lines in a format that makes them easy to copy-and-paste into
MySQL:

LINES TO CUT-AND-PASTE:
grant select,insert,update,delete,create,drop,alter
on shakemap.* to shake@localhost identified by 'shake_password';
END LINES TO CUT-AND-PASTE (don't forget to change the password...)

If you are going to be backing up and restoring the database (see Section 3.4.3.5), you will also
want to grant the ‘shakemap’ user the ‘lock tables’ privilege.

Also create a user ‘admin’ to do backups:

 10

 mysql> grant select on shakemap.* to admin@localhost;
 Query OK, 0 rows affected (0.00 sec)

LINES TO CUT-AND-PASTE:
grant select on shakemap.* to admin@localhost;
END LINES TO CUT-AND-PASTE

You may wish to create databases for other users, as well. Simply create a separate database for
them, and then modify the above command to use the new username and database. For example:

 mysql> create database jims_database;
 ...
 mysql> grant select,insert,update,delete,create,drop,alter
 -> on jims_database.*
 -> to jim@localhost
 -> identified by ‘jims_password’;

LINES TO CUT-AND-PASTE:
grant select,insert,update,delete,create,drop,alter
on jims_database.* to jim@localhost identified by
‘jims_password’;
END LINES TO CUT-AND-PASTE (don't forget to change the username and password...)

The other users will have to configure their ‘mydb.conf’ and ‘password’ files accordingly, and
can then use the included programs to create the tables and convert their old ‘shake_flags’ and
‘earthquake’ databases. Note there does not have to be direct correspondence between system
usernames and MySQL usernames. Multiple users can share the same MySQL database either
through a shared MySQL username, or individual MySQL usernames that all have permission to
access the database.

For an explanation of the way ShakeMap uses the database and tables, see section 0, “Running
ShakeMap,” below.

3.3.2 Installation and Upgrade
Because the ShakeMap code is frequently updated, and the update method is through a
Subversion ‘svn update’, many operators have found it worthwhile to establish an installation
directory (or system) separate from their production system. The installation directory can be
used to obtain the updates, make any necessary changes to configuration files, add any region-
specific code, and test, while not disturbing the production system(s). Once the operator is
satisfied that the update is working, (s)he can use ‘rsync’ (or a similar method) to push the
ShakeMap directory tree to the production system. (And then, of course, test it again.) If you use
multiple machines, it will save a lot of time and headaches if they are set up and configured
exactly the same.

To begin, install the software packages and modules described in the section “

 11

System and Software Requirements” above. If you are upgrading, there may be some new
modules, and some of the existing modules may need to be updated.

For the installation of ShakeMap you will be working in an installation directory of your choice,
which we will refer to as <shake_home>. You will then need to check out the latest version of
the ShakeMap code:

% cd <shake_home>
 % svn checkout
https://vault.gps.caltech.edu/repos/products/shakemap/tags/release-3.5/
local_directory_name

(Note that the “% svn checkout” line above is wrapped around to three lines in this document.
When you enter that command on your computer all three lines above should be on the same
line.) No password should be necessary. Subversion will check out all of the files in the
ShakeMap directory tree. Table 3.2A provides a description of each of the top-level directories
and Table 3.2B lists some of the more important subdirectories.

Now you will create a version of ShakeMap that is customized for your computing system. To
do this (on Linux and Solaris):

% cd <shake_home>/install
% make

On FreeBSD, do:

 % gmake INSTALL=/usr/bin/install

When you do this step, you may get some warnings about not being able to ‘cd’ to certain
directories. These are harmless and should be ignored.

(In the instructions that follow we will use make, for which the FreeBSD users should substitute
gmake unless their GNU make is installed as, or aliased to, ‘make.’)

Edit the file ‘<shake_home>/include/macros.’

The file <shake_home>/include/macros sets the paths to many of the required software packages
as well as flags for running various programs. It tries to find the correct path, and guesses if it
cannot, but you should review and verify its choices because it often guesses badly.

Note: When configuring your macros files, please be aware that the default paths for some
parameters (especially paths to GMT and NetCDF libraries and include files) may not be correct
for your system. Make sure you double check all the assignments in the macros file.

Next, issue the following commands:

% cd <shake_home>

 12

% make all

Make outputs to the screen any errors and any configuration files that must be edited. Table 3.2C
describes some additional top-level directories that will exist following this last step.

The next step in installing ShakeMap is to customize for your specific geographic region. To do
this you will need to install a number of data files, and modify the configuration files in the
directory ‘<shake_home>/config.’ More information about the customization process can be
found in section 3.4, Customizing ShakeMap; complete the customization process described
there before proceeding with this section.

If this is a new install or first time upgrade to ShakeMap V3.0+, it will be necessary to create
tables in the MySQL database. Once you have set up your configuration files, making the tables
is easily accomplished:

 % cd <shake_home>/bin
 % ./mktables

This process will not destroy the tables if they already exist; to do that, connect to MySQL and
issue the proper “drop table” commands. Errors in this program are not usually fatal: if one or
more tables already exist, the program will complain, but will continue and make any tables that
do not yet exist.

Once the config files have been edited, the final step for installation is to create the web products
and put them on the web server, assuming you wish to use the ShakeMap generated web pages.
To do this:

% cd <shake_home>/lib
% make web
% cd <shake_home>/bin
% ./transfer -permweb

Check that the transfer was successful. You will probably need to run and transfer an event
before the web pages will work properly.

As noted above, it is probably best to do all of the setup, configuration, and testing on a non-
production system, and then use something like ‘rsync’ to push the configured software to your
production directory (or system).

Note that within the ShakeMap <shake_home> directory the subdirectory ‘data’ will contain all
the event data and intermediate files as well as the final products to be transferred. Depending on
the number of events, and the resolution of your grid and topography files, this directory can
grow to be quite large. If disk space is limited on the install partition, the 'data' directory should
be placed on a larger partition and a link to it (called ‘data’) should be made from the install
directory. E.g.:

% cd $SM_HOME

 13

% rmdir data
% ln -s /bigdisk/shake_data data

3.4 Customizing ShakeMap

3.4.1 Region-Specific Files
There are a number of region-specific files that you will need to create (see Table 3.3A and
Table 3.3B). You should give these files names different from those in the distribution and in the
configuration files or they will be overwritten every time you upgrade. Most of these files are
part of the configuration defined in ‘mapping.conf’ and ‘grind.conf.’ See the configuration files
themselves for more documentation.

3.4.2 Configuration Files
In the directory <shake_home>/config you will find a number of configuration files. It is
important to read the documentation within these files as they provide most of the information
necessary to customize ShakeMap to your particular environment. Table 3.3C lists the
ShakeMap programs and the configuration files upon which they depend. All of the programs
also depend on ‘mydb.conf’ to access the MySQL database. More discussion of shake.conf and
mysql.conf can be found in the section “Running ShakeMap.”

When editing configuration files, please note that the default values (as described in the
documentation for some parameters) may not be the same as the value assigned to the parameter
by default within the configuration file itself. The assigned value is the recommended value, the
documented default is only used if no assignment is made, and may no longer be the
recommended value (but may have been retained for reasons of backward compatibility).

When upgrading please note: From time to time we make changes to programs that require
changes to config files. These changes must be merged with the config files that the user may
have modified in customizing his/her version of ShakeMap. This is a non-trivial problem, and
our solution is a bit simplistic. The merging consists of inserting the user's potentially changed
config statements as comments into the new config file. The user may then go through the file
and select which config statements are appropriate. This process takes a few minutes, but is
fairly easy. Except in the case of ‘transfer.conf,’ which turns into a mess when it is changed. In
this case it is often easier to clean out the destinations and file lists in the new config, then go to
the backup file ‘transfer.conf.BAK’ (always made to keep a safe copy of the user-modified
config files around) and just cut and paste your old destinations and file lists back into the new
config file.)

3.4.3 Vs30 Grids
If you will require ShakeMap to apply site amplification factors to your ground motion maps, as
most regional operators do, you will need to generate a grid of VS30 (hereafter, Vs30) values to
cover your region of interest. Ideally, this grid will be at the same resolution as your output
maps, as configured in grind.conf. You will specify this file with the qtm_file macro in
grind.conf.

 14

Obtaining the requisite Vs30 file is the responsibility of the network operator. If this proves
difficult, one can approximate Vs30 from topography using the Allen and Wald (2008) approach,
which is built into the program topo2grd. If grind is run with the –qtm flag, but no Vs30 grid is
specified with the qtm_file macro in grind.conf, then grind will attempt to build the Vs30 file on
the fly using Digital Elevation Model (DEM) files. To use this approach, one needs to set the
DEMDIR macro in include/macros to point to a DEM directory. You can get DEM tiles from
http://www.dgadv.com/srtm30/ or other places by Googling “SRTM30.”

The topo2grd program requires the DEM files to be in a fairly specific format. We use a (Perl)
command like:

my $command = "$gmtdir/xyz2grd $file -G$section.grd -R$lon/$lat
-I30c -Ddeg/deg/m/1/0 -L -F -ZTLhw -N-9999 -V";

to convert the DEM file to a GMT grd. The program topo2grd can then cut a chunk out of this
file and convert it to Vs30.

None of this is really intended to be part of the normal ShakeMap distribution. topo2grd exists
for the use of the global ShakeMap group at NEIC, so if you are going to try to make it work, be
prepared to do some hacking on your own. You're much better off making a static Vs30 GMT
grid file for your region and configuring its use in grind.conf.

3.4.4 Site Amplification Tables
Running grind with the –qtm flag will cause the program to apply site amplification to the
computed ground motions. Many GMPEs have built-in site amplification functions. Running
grind with the –gmpesc flag will apply the selected GMPE’s native amplifications using the
Vs30 grid discussed above. If the user does not specify –gmpesc, grind will use one of two more
general approaches to site amplification, both based upon Borcherdt (1994):

1) The default approach uses the table <shake_home>/lib/sitecorr/Borcherdt94.dat (or a similar

file created by the user) to specify the site amplification factors. In the case of
Borcherdt94.dat, the values were taken directly from Table 2 of Borcherdt (1994). The table
provides ma and mv (the short- and mid-period factors) for the equations (Eqns. 7a and 7b of
Borcherdt (1994)):

Fa = (v0 / v)

ma

Fv = (v0 / v)
mv

The table provides the factors for various input amplitudes. Amplitudes below the lowest
specified receive the factor for the lowest amplitude, amplitudes greater than the highest
receive the factor for the highest, and the factors for amplitudes in between are linearly
interpolated between the factors for the bracketing amplitudes. v0 is the reference velocity –
for ShakeMap this is smVs30default as set in grind.conf, and v is the site specific Vs30. The
format of the table is discussed more in <shake_home>/src/lib/Borcherdt94.pm and

 15

<shake_home>/lib/sitecorr/Borcherdt94.dat serves as an example.

2) If the operator specifies –oldsc along with –qtm, the system will attempt to use an old-style
Borcherdt table, as used by ShakeMap prior to September 2011. The structure of this table is
described in the source file <shake_home>/src/lib/SiteCorrGrd.pm and an example may be
found in <shake_home>/lib/sitecorr/site_corr_cdmg.dat. We note that this earlier approach
used hard cutoffs in both Vs30 and input amplitude, unlike the smooth interpolation of
approach #1, above. Note also that the amplification factors specified are the actual Fa and
Fv , not ma and mv , as in #1, above.

3.4.5 MMI Site Amplification Tables
Earlier versions of ShakeMap required the operator to make MMI site correction files with the
program makeMMIsiteTable. It is no longer necessary to do so – the MMI site corrections are
computed on the fly using the Borcherdt table and the selected GMICE.

3.4.6 Passwords
You will need passwords to access a database through db.conf or mydb.conf (or for transfer
using ssh or ftp). To set up a password file:

% cd <shake_home>
% mkdir pw
% chmod og-rx pw
% cd pw

Create or copy your passwords file to ‘passwords’ and make this file readable by the ShakeMap
user only. For an explanation of the format of this file, see ‘<shake_home>/src/lib/Password.pm.’
Also see the section “Running ShakeMap,” below for more on ‘mydb.conf.’ In general, the
format for ssh and FTP passwords is:

 <machine> <username> <password>

And for database access the format is:

 <dbname> <username> <password>

where the substitutions for “dbname” and “username” above should exactly match the strings in
the database configuration file.

Be aware that this approach leaves unencrypted passwords in a plain text file. This approach is
not particularly secure and we welcome the contribution of anyone wishing to improve upon it.

3.4.7 Web Pages
You may also wish to make changes to the web pages. We have tried to include much of the
region-specific data in the web.conf file, but there may be additional customizations needed.
Please keep track of your changes and let us know so that we can add common items to the
configuration file. The web pages and templates can be found in <shake_home>/lib/genex/web/.

 16

We have more or less stopped development of the web page code within ShakeMap. The USGS
Earthquake Program’s ShakeMap site is now much more sophisticated and modern-looking. See
http://earthquake.usgs.gov/eqcenter/shakemap/list.php?y=2009&n=sc for an example of the new
page layout.

There are plans underway to create web templates that will allows regional networks to obtain
similar look and behavior to the USGS Earthquake Program’s ShakeMap site yet simplify local
customization. Such a template will also entail providing a server-side PHP indexer to sort,
update and search real-time, archived, and Scenario ShakeMaps.

3.4.8 Automation
Because each regional network is different, automation is left to you. Currently code exists to
automate generating ShakeMaps from two types of systems: 1) a database running the
NCEDC/SCEDC schema (as in southern California and Berkeley), and 2) earthworm running
with the Oracle database. If you are using either of these systems you will be able to adapt
current code.

If you do not use one of the above data acquisition systems, you will need to first generate code
that will process data in near-real-time. The output of this processing should include peak
horizontal acceleration, peak horizontal velocity, and 5%-damped pseudo-spectral peak
horizontal acceleration (0.3, 1.0 and 3.0 second periods) for all horizontal component data. This
information along with station information must be written into ShakeMap compatible XML
files with filenames that end in “_dat.xml.” The event information – latitude, longitude, depth,
and magnitude – should be written to a second ShakeMap compatible XML file – “event.xml”.
See the section on “ShakeMap XML Input,” below, for a discussion of these file formats.
Examples of data and event XML files can be found in the distribution in the directory
<shake_home>/data/9583161/input.

Next, you need a program to watch when these files are made, then copy them to the ShakeMap
input directory and start ShakeMap. This could, of course, be the same program that creates the
files.

The distribution includes a program called ‘queue’ and its associated configuration file
‘queue.conf’ that may be of interest. queue waits for an alarm announcing an event or
cancellation (see the programs shake_alarm and shake_cancel) and then takes appropriate action
depending on its configuration (i.e., given a location and magnitude it will either kick off a run of
ShakeMap or ignore the event). It can prioritize and queue multiple events, and schedule events
for automatic reprocessing at user-defined intervals. The program accesses a database to retrieve
information on the earthquake, but should be fairly easy to adapt to other systems.

If you develop a program (or modify queue) that you think might be of interest to other
ShakeMap installations, please let us know and we will include it in a future release.

 17

3.4.9 Overriding the Automation (input/source.txt and
input/timestamp_text.txt)

Because most ShakeMap installations automatically generate XML input files and dump them in
the input directory, manual changes made by the operator to the event.xml file will generally be
overwritten by the next automatic run. We therefore provide a mechanism by which the operator
may override or supplement any of the event-specific data in event.xml. The operator may add
an optional file to an event’s input directory called source.txt. The structure of the file is one
parameter per line, in the form parameter=value. In particular, the operator may specify the
source mechanism with “mech” (this is the equivalent of the “type” attribute in event.xml),
which may be one of “RS,” “SS,” “NM,” or “ALL” for reverse slip, strike slip, normal, and
unspecified mechanisms, respectively. Some, but not all of the GMPE modules use some or all
of these values. They should generally do something sensible if they don’t know what to do with
a particular mechanism. The operator may also specify “zone” as one of “interface” or
“intraslab” (which are currently only used by the Youngs97 GMPE, and will themselves be
overridden by using one of Youngs97_interface or Youngs97_intraslab). Other interesting
parameters are “aftershock” (which may be 1 or 0 and is used by CY08), “rake” (the rake angle
of the rupture, used by CY08 when the mechanism is RS), and “region” (which may be “SCal”
or “CCal” for CY08 when the magnitude is < 5.5 (and which will be overridden by the choice of
either CY08_SMM_SCal or CY08_SMM_CCal), or “CA” (California) or “CEUS” (central and
eastern U.S.) for AW07 (also overridden by either AW07_CA or AW07_CEUS). Any of the
other source parameters may also be set: eid, string, year, mon, day, hour, minute, sec, timezone,
lat, lon, depth, mag, pga, pgv, psa03, psa10, and psa30, but it isn’t apparent why one would do
so. Blank lines and lines beginning with ‘#’ (i.e., comments) are ignored.

The operator may also place an optional file called timestamp_text.txt in an event’s input
directory. A line of text in this file will be printed on timestamp line on the maps, following the
standard timestamp. There is limited space for the text -- about half a line -- and is intended to
provide some region-specific data, as needed. Be careful with special characters and quotation
marks, as they can cause the program to abort. If you use quotes, make sure they are paired.
Make sure you test your text before adding it to any automatic processing.

3.4.10 Ground-Motion Prediction Equation (GMPE), Intensity
Prediction Equation (IPE), and Ground-Motion/Intensity Conversion
Equation (GMICE) Modules

The selection of the proper GMPE, IPE, and GMICE modules for a particular region or
earthquake is beyond the scope of this document. Below we provide summary tables listing the
available modules. See also grind.conf for information about configuring the system to select
GMPEs and IPEs based on earthquake magnitude and depth. For geographic customizations, see
the section on Zone Config.

Custom GMPE modules may be needed for some regions. If you are going to develop a module,
the interface must be modeled after the ones found in <shake_src>/src/lib/GMPE (e.g.,
Small.pm). It will probably be easiest to select a module from the table that is closest in
behavior to the new GMPE, copy it, and edit it as necessary. Once the module has been written,
it will need to be added to the list of modules in the Makefile. A ‘use’ line for the module should

 18

also be added to the file <shake_src>/src/lib/GMPE.pm. Then run ‘make.’ You will then be
able to configure grind.conf to use the new module.

Similar procedures apply for writing a new Intensity Prediction Equation, though it should be
placed in the directory <shake_src>/src/lib/IPE, and the ‘use’ line should be added to
<shake_src>/src/lib/IPE.pm.

Similar procedures also apply for creating new Ground Motion/Intensity Conversion Equation
modules, but substituting “GMICE” for “GMPE” or “IPE” above.

Similar procedures also apply for creating new modules for correcting amplitudes for basin
depth, but substituting “Basin” for “GMPE,” etc.

With ShakeMap V3.5, module writing has become a bit more complicated. We anticipate more
extensive documentation to be available shortly. Look for it in the distribution’s doc directory.

Notes on specific GMPEs:

BA08 – Includes the Atkinson and Boore (2011) modifications for small- to moderate-magnitude
earthquakes.

CY08, CY08_SMM_SCal, CY08_SMM_CCal – For events M > 5.5, these modules function
identically. For events M ! 5.5, CY08_SMM_SCal uses the 2009 paper’s small- to moderate-
magnitude coefficients for southern California. CY08_SMM_CCal uses the central (northern)
California coefficients. To use the more general module “CY08” for both regions, you may set
the “region” attribute in the “earthquake” tag in the event XML, or set a “region=” field in the
source.txt file. Acceptable values are “CCal” and “SCal”. The default is “SCal”.

Garcia05 – Does not have GMPE-native site amplification terms. Use of –gmpesc or –nativesc
with grind will cause the program to abort.

Youngs97, Youngs97_(interface | intraslab) – The two tectonic environment-specific modules
instantiate an instance of the general module, Youngs97, with the coefficients for their respective
regimes. The general module can be used by specifying “crustal” or “interface” in the “zone”
attribute in the “earthquake” tag of the event XML, or setting a “zone=” field in the source.txt
file in the event’s input directory. There is no default zone for Youngs97 – the tectonic regime
must be specified or the program will terminate.

Zhao06, Zhao06_(crustal | interface | intraslab) – The three tectonic environment-specific
modules instantiate an instance of the general module, Zhao06, with the coefficients for their
respective regimes. The general module can be used by specifying “crustal,” “interface,” or
“intraslab” in the “zone” attribute in the “earthquake” tag of the event XML, or setting a “zone=”
field in the source.txt file in the event’s input directory. The default is “crustal.”

 19

Table 1. Ground-Motion Prediction Equations (GMPEs) in ShakeMap 3.5

Module Name Reference Magnitude
Range

Distance
Range
(km)

Distance
Metric PGV PSA Uncertainty

Type Site Term Mech4 Region

AB06_ENA_BC Atkinson &
Boore (2006)5 ! 4.0 0 – 1000 RRup Yes Yes6 Spatially

constant7 Yes8 N/A Eastern North America

AkkarBommer07
Akkar &
Bommer (2007,
2007b)

5.0 " M "
7.6 5 – 100 RRup Yes Yes9 Spatially

constant Yes10 RS, NM,
ALL Europe

BA0811 Boore &
Atkinson (2008)

3.0 " M "
8.0 0 – 200 RJB Yes Yes Spatially

constant12 Yes SS, RS,
NM, ALL NGA Active Tectonic

BJF97 Boore, Joyner,
Fumal (1997)

5.0 " M "
7.4 0 – 80 RJB No13 Yes Spatially

constant Yes SS, RS,
ALL

Western North
America

Boatwright03 Boatwright, et al.
(2003)

3.5 " M "
7.1 0 – 300 RHypo Yes No14 Spatially

constant Yes15 N/A Northern California

CY08
CY08_SMM_CCal
CY08_SMM_SCal

Chiou & Youngs
(2008), Chiou, et
al. (2009)

3.0 < M "
7.7 0 – 200 RRup

16 Yes Yes Spatially
variable17 Yes SS, RS,

NM
NGA Active Tectonic,
CA for SMM

4 Allowable source mechanisms for GMPEs that differentiate. SS = strike slip; RS = reverse slip; NM = normal; ALL = unspecified; N/A = module ignores
source mech parameter.
5 Updated with the Atkinson & Boore (2011) modifications.
6 Module uses 0.315 sec coefficients for 0.3 sec PSA, and 3.13 sec coefficients for 3.0 sec PSA.
7 No inter-/intra-event differentiation; constant sigma for all frequencies.
8 Uses site terms from BA08.
9 Relation produces spectral displacement, module converts to SA.
10 Relation provides amplification terms for “soft soil,” and “stiff soil,” which are taken to be Vs30 < 360 m/s and 360 " Vs30 < 760, respectively.
11 Updated with the Atkinson & Boore (2011) modifications.
12 Inter-event uncertainty changes with specified/unspecified fault type.
13 Module uses PGV from Joyner & Boore (1988).
14 The module calls BJF97 for PSA.
15 Uses BJF97 site amplification term.
16 Hanging wall term uses RJB and a custom distance measure, RX.
17 Magnitude, site, and amplitude dependent.

 20

Module Name Reference Magnitude
Range

Distance
Range
(km)

Distance
Metric PGV PSA Uncertainty

Type Site Term Mech4 Region

Campbell2003 Campbell (2003;
2004) ! 5.0 0 – 1000 RRup N&H’82 Yes Spatially

constant18 No19 N/A Eastern North America

Garcia05 Garcia et al.
(2005)

5.2 " M "
7.4 0 – 400 RRup,

RHypo
Yes Yes Spatially

constant No N/A Mexico intra-slab

HazusPGV Boore, Joyner,
Fumal (1997)

5.0 " M "
7.4 0 – 80 RJB N&H’8220 Yes Spatially

constant Yes SS, RS,
ALL

Western North
America

Kanno2006 Kanno, et al.
(2006) ! 5.5 0 – 500 RRup Yes Yes Spatially

constant Yes N/A Subduction, Active
Tectonic

MA2005 Motazedian &
Atkinson (2005)

3.0 " M "
8.0 2 – 500 RRup Yes Yes Spatially

constant No21 N/A Puerto Rico

PP04
Pankow &
Pechmann
(2004)

5.0 " M "
7.7 0 – 100 RJB Yes Yes22 Spatially

constant Limited23 N/A24 Extensional Tectonic

Small Quitoriano 3.0 " M "
5.2 0 – 200 RJB Yes Yes Spatially

constant25 Yes N/A Active Tectonic (CA)

Youngs97
Youngs97_interface
Youngs97_intraslab

Youngs (1997) 5.2 " M "
8.0 0 – 300 RRup N&H’82 Yes Spatially

constant26 No27 N/A Subduction: interface,
intraslab28

18 No inter-/intra-event differentiation.
19 Module uses site corrections from AB06_ENA_BC.
20 PGV from PSA 1.0 sec, via Newmark & Hall 1982 conversion.
21 Module uses site correction terms from HazusPGV (i.e., BJF97) module.
22 Module uses 2.0 second coefficients for 3.0 second PSA.
23 “Soil” and “rock” corrections.
24 Assumed to be normal faulting.
25 No inter-/intra-event differentiation.
26 No inter-/intra-event differentiation. Magnitude dependent.
27 Module requires operator to configure and use Borcherdt-style site tables.
28 Rupture type need only be specified for Youngs97, the *_interface and *_intraslab modules have the rupture type hardwired.

 21

Module Name Reference Magnitude
Range

Distance
Range
(km)

Distance
Metric PGV PSA Uncertainty

Type Site Term Mech4 Region

Zhao06
Zhao06_crustal

Zhao06_interface
Zhao06_intraslab

Zhao, et al.
(2006)

5.0 " M "
8.3 0 – 300 RRup N&H’82 Yes Spatially

constant Yes29 SS, NM,
RS30

Japan: crustal,
interface, slab

29 Four Vs30 site classes are recognized. Terms do not account for nonlinearity of amplification.
30 Only crustal events are sensitive to rupture type, subduction events are not. Strike-slip and normal events are not differentiated. The default mechanism is SS.

 22

Table 2. Intensity Prediction Equations (IPEs) in ShakeMap 3.5

Module Name Reference Magnitude
Range

Distance
Range
(km)

Distance
Metric

Uncertainty
Type Site Term Region

AW07_CA
AW07_CEUS

Atkinson &
Wald (2007)

2.0 " M "
7.9

0 – 500
0 – 1000 RJB Spatially

constant31 No California
Central and Eastern U.S.

TA12_mmi
(was: TA09_mmi)

Allen, et al.
(2012) RRup &

RHyp
32

Distance
dependent33 Yes Active Tectonic

DefaultIPE - - - - - - Behavior is GMPE- and
GMICE-specific

Table 3. Ground-Motion/Intensity Conversion Equations (GMICEs) in ShakeMap 3.5

Module Name Reference Magnitude
Term

Distance
Term Reversible34 PSA Region

AK07 Atkinson &
Kaka (2007) Yes Yes No Yes California,

Central and Eastern U.S.

DC11_CA
DC11_ENA

Dangkua &
Cramer (2011) Yes Yes No Yes California (DC11_CA)

Eastern U.S. (DC11_ENA)

FM10 Faenza &
Michelini (2010) No No Yes No Italy (MCS)

WGRW11 Worden, et al.
(2012) Yes Yes Yes Yes California

Wald99 Wald, et al.
(1999) No No No No California

31 No inter-/intra-event differentiation.
32 Uses RRup if fault is defined, RHyp otherwise.
33 No inter-/intra-event differentiation.
34 “Reversible” here means that the GMICE was developed with reversibility in mind. All of the modules may be used in a reversible manner.

 23

3.5 Running ShakeMap
ShakeMap consists of a series of programs (refer to Table 3.3C) that, when run sequentially,
produce the desired output and transfer it to its destination. All of the programs will print
documentation when run with the ‘-help’ flag, and most of them have an associated
configuration file that controls the behavior of the program (again, see Table 3.3C, and the
section “Configuration Files,” above). The configuration files contain documentation that
explains the various required and optional parameters.

3.5.1 Data Directory Structure
Before running ShakeMap you must collect some data. These data are stored in the data
directory which, as mentioned elsewhere, can become quite large. Put it somewhere with lots of
space and link to it from your distribution directory. Each event is stored in its own sub-directory
named with the event ID, be it a number or a text string (i.e., ‘<shake_home>/data/<event_id>’).
This event ID must be the same as the one found in the file containing the earthquake
information – ‘event.xml’. Within each event directory a number of subdirectories are created
(Table 3.4). ShakeMap will create all of these directories except ‘raw’ and ‘input’.

3.5.2 Creating the Maps
Once the ShakeMap software is installed and configured, creating a ShakeMap is simple. First,
cd to ‘<shake_home>/bin’ (e.g., ‘/opt/ShakeMap/bin’), then execute shake:

% ./shake -event <event_id>

This will run the pre-configured set of programs as specified in ‘shake.conf.’ If you would like a
little more information about the progress of the run, use the -verbose flag to shake.
It is not always appropriate or necessary to run all of the programs. For instance, when running a
historic event, or an event not otherwise in the database, retrieve will probably fail, causing
shake to abort. One possibility is to reconfigure ‘shake.conf’ to skip the unnecessary program(s).
Another option is to use the -dryrun flag:

% ./shake -event <event_id> -dryrun

Which will produce output showing the programs that shake would run (and their options)
without actually running them:

/opt/ShakeMap/bin/retrieve -event 9108645
/opt/ShakeMap/bin/pending -event 9108645
/opt/ShakeMap/bin/grind -event 9108645 -qtm -boundcheck

-lonspan 4.5 -psa
/opt/ShakeMap/bin/mapping -event 9108645 -timestamp
/opt/ShakeMap/bin/shakemail -event 9108645
/opt/ShakeMap/bin/tag -event 9108645 -mainshock
/opt/ShakeMap/bin/genex -event 9108645
/opt/ShakeMap/bin/print -event 9108645

 24

/opt/ShakeMap/bin/transfer -event 9108645 -www -ftp

You may then run the programs you choose and ignore the others. For instance, if you were to
make a change to your user-supplied estimates, you might just run grind and mapping and then
look at the plots as PostScript (the .ps files in the ‘<shake_home>/data/<event_id>/mapping’
directory). You could then run genex and look at the JPEGs. Or also run transfer and look at the
images on your web site.

3.5.3 The Processing Sequence, shake, and Versioning
Of course, it is never that simple. And even if it were, there are reasons for having a better
understanding of the system. Here, then, is more detailed information on configuring ‘shake’ and
on the way the versioning system works.

3.5.3.1 shake.conf
The program ‘shake’ is the main ShakeMap program. Its job is to run a series of other programs
in a specified order, possibly calling the programs with invocation flags that vary with
magnitude. The program can also be told to call certain programs only the first time a given
event is processed. Run shake -help to see other options.

At this point, it is recommended that you read ‘shake.conf’ (in ‘<shake_home>/config’) to get a
basic idea of what is available. The default configuration is probably about right for most
installations. Some of the parameters (‘once_only,’ ‘no_dep,’ ‘cancel,’ and ‘scenario_skip’)
probably won’t need to be changed unless you add a new program to the processing sequence
with the ‘program’ parameter (and maybe not even then).

In addition to the ShakeMap programs described in Table 3.3C, there is a command ‘sleep’ that
may be used anywhere in the shake.conf processing sequence (defined by the sequence of
‘program’ lines). The usage is:

 program : sleep N

where ‘N’ is an integer number of seconds for shake to wait before executing the next program.
This command may be useful to delay the call to retrieve for a few seconds to allow databases to
be updated or to deal with other system-specific timing issues. The sleep command may be used
any number of times in the processing sequence.

‘shake.conf’ is also the configuration file for the program ‘cancel,’ which effectively undoes the
effects of shake, removing the event from the system, sending cancellation notices, and
rebuilding the web pages to reflect the absence of the cancelled event.

3.5.3.2 The Processing Sequence and shake.conf
ShakeMaps are not always automatically generated. Frequently, manual intervention is necessary
or desirable, and we often run one or more of the programs repeatedly until we are satisfied with
the results. For example, the automatic processing sequence might go something like this:

 retrieve ! pending ! grind ! tag ! mapping ! genex ! shakemail ! transfer !

 25

setversion

But after the automatic run, we might wish to change the map dimensions or centering by
changing the options to grind. Our manual sequence might look like this:

 grind ! mapping ! genex ! transfer

We might run the grind ! mapping pair several times in succession until we are satisfied with
the results. Satisfied, we then run transfer to update the web pages with our new maps. Previous
versions of ShakeMap would happily do this, despite the fact that we forgot to run genex and, as
a result, some of our products (e.g., the PostScript maps) do not agree with others (e.g., the JPEG
maps and shapefiles).

Starting with ShakeMap V3.0 we have introduced the idea of program dependency. Simply put,
a program is considered to be dependent on the programs that precede it in the processing
sequence, and it will not run unless the sequence is run in the proper order. For instance, in the
above example, transfer would recognize that mapping had run more recently than genex and
would abort with an error message explaining the problem.

Things of which to be aware:

1) The processing sequence is defined by the order of ‘program’ lines in ‘shake.conf.’
2) A program that does not affect the performance of programs later in the sequence (i.e.,

later programs do not depend on its output) can be identified with a ‘no_dep’ line in
‘shake.conf.’ For instance, shakemail sends email to interested parties, but does not
generate products that any programs later in the processing sequence depend upon. Thus,
shakemail is declared ‘no_dep.’ When a later program (e.g., transfer) runs, it will not
include shakemail in its investigation of the processing sequence. But shakemail itself
will still require the programs that precede it to be run in sequence. Thus, if shakemail is
run immediately after mapping, it will complain that genex has not been run.

3) You do not have to always start at the beginning of the sequence. Once an event has been
run once, you can start anywhere in the sequence. You can jump in and re-run mapping.
You can run it a bunch of times in a row. Then you can run genex. Then you can run
mapping again. Then you can run grind. What you can’t do is use out-of-date output.

4) Yes, it seems complicated. But it is actually simple. Assume the function T() returns the
time a program, P, was most recently run. Assume that ‘Pn’ is the nth non-no_dep
program in the processing sequence. The software enforces the relation:
 T(P1) < T(P2) < … < T(Pn-1)
with the provision that each of the n-1 earlier programs has run at least once. Okay,
maybe it is a little complicated.

5) You can always force a program to run with the -forcerun flag, but there may be
consequences.

So how does the system keep track of all this? By using the ‘shake_runs’ database table
described in the next section.

 26

3.5.3.3 Flags, Versions, and the MySQL Database
During the ShakeMap installation process you created a number of tables in your MySQL
database. These tables keep track of the earthquakes ShakeMap has processed, the flags with
which each program was run for each version of the maps, and provide functionality to support
versions and the processing sequence integrity system described above.

The database tables in the shakemap database can be listed with mysql:

mysql> use shakemap;
Database changed
mysql> show tables;
+--------------------+
| Tables_in_shakemap |
+--------------------+
| earthquake |
| server |
| shake_lock |
| shake_runs |
| shake_version |
+--------------------+
5 rows in set (0.00 sec)

The ‘server’ table contains information the ShakeCast system needs to connect to a server.
The ‘earthquake’ table is very similar to the earlier CSV table of the same name:

mysql> describe earthquake;
+-----------+-----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-----------+------+-----+---------+-------+
evid	char(80)		PRI		
name	char(255)	YES		NULL	
locstring	char(255)	YES		NULL	
tabsol	datetime	YES		NULL	
tzone	char(8)	YES		NULL	
mag	double	YES		NULL	
lat	double	YES		NULL	
lon	double	YES		NULL	
mainshock	char(20)	YES		NULL	
cluster	char(80)	YES		NULL	
+-----------+-----------+------+-----+---------+-------+
10 rows in set (0.00 sec)

This table is accessed and modified by a number of programs (tag, genex, cancel, etc.). Its
primary purpose is to maintain a complete inventory of the events for which ShakeMaps have
been made. Under rare circumstances you may have to edit this table (using SQL commands), so
the following table describes the columns.

 27

Table: Columns in the ‘earthquake’ table
Name Description Valid values
evid The event identifier. Any text string that forms a valid

Unix filename, up to 80
characters.

name The long, possibly descriptive name of the
event; will be printed at the top of the maps.

Any text string up to 255
characters.

locstring The location of the earthquake. If the name
field is not specified (through the program
‘tag’), this text will be used as the event name
on the maps.

Any text string up to 255
characters.

tabsol The date and time of the event in the format:
yyyy-mm-dd hh:mm:ss

From 1000-01-01 12:00:00 AM to
9999-12-31 11:59:59 PM

tzone The timezone of ‘tabsol,’ above. Usually ‘GMT,’ but could be
‘PST,’ ‘MDT,’ etc.

mag The earthquake magnitude. Any valid magnitude.
lat The latitude of the earthquake epicenter. +90 to -90, north is positive, south

is negative.
lon The longitude of the earthquake epicenter +180 to -180, west is negative.
mainshock Value set by the program ‘tag’ to categorize

the earthquake
Valid values include ‘’, ‘current,’
‘historic,’ ‘scenario,’ and
‘invisible.’

cluster If this event is part of a larger sequence, this
field specifies the evid of the mainshock in
the sequence. This may be useful for creating
a special archive page for a particular
sequence.

Any valid evid.

The table ‘shake_lock’ table is used to prevent multiple ShakeMap processes from operating on
an event at the same time. Each ShakeMap program will acquire the lock before it begins
processing, and will release the lock when it quits (or is killed).

mysql> describe shake_lock;
+---------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+----------+------+-----+---------+-------+
evid	char(80)		PRI		
program	char(80)				
pid	int(11)			0	
tepoch	int(11)			0	
+---------+----------+------+-----+---------+-------+
4 rows in set (0.00 sec)

The columns are: the event id, the name of the program, the process id of the locking process,
and the Unix epoch time that the lock was acquired. Occasionally, a lock will be held when the
locking process is dead or hung. The lock can be broken by 1) using the ‘-forcerun’ flag to the

 28

next program, or 2) calling the program ‘unlock’ with the event id of the locked event (this
program will also optionally try to kill the locking process), or 3) if a lock is stale (more than
fifteen minutes old), ShakeMap programs will automatically unlock the event and continue
processing after issuing a warning message.

The ‘shake_runs’ table keeps track of the last run of each program for each version of an event.
But first:

A Digression on Versioning
After a great deal of discussion and consideration, we decided that the most useful demarcation
of a ‘version’ of a ShakeMap (which is really a collection of products) is the point at which the
products are distributed to external destinations. In other words, we create a new version every
time we run transfer, whether or not that version differs in any significant way from the previous
version. (Models that assigned version numbers to each product based on its difference from the
previous version of that product, while sexy, were ultimately found to be too complicated,
unreliable, and unworkable. Consider, for example, a JPEG map that varies in no way from
another map, except that the embedded processing date is different. Is that a different version?
Some say “yes,” some say “no.” Plus, no one could come up with a compelling reason for
defining versions this way. But our digression digresses…)

So how does this versioning system work? Let us assume that transfer has just run on an event
and created version ‘N’ (if transfer has never run for this event, ‘N’ would be zero). We then run
one of the other programs in the processing sequence. For instance, we run grind to change the
“lonspan.” The program will inspect the ‘shake_version’ table and determine that the most recent
version of the event is version ‘N.’ grind will then declare itself to be working on version ‘N+1.’
It will check that the processing sequence is being honored, do its processing job, then insert
some information about itself (its name, the current time and date, the version, and the flags with
which it was invoked) in the ‘shake_runs’ table before exiting. If we were to run this program
again, it would go through the same process, but when it found that a row already existed in the
shake_flags table for that event/program/version combination, it would simply update the
date/time and invocation flags. It would still be version N+1. We could run it twenty times and it
would still be version N+1. We could then run mapping (version N+1) and genex (version N+1).
We could go back and run grind some more (still version N+1), mapping, and genex. Finally,
when we run transfer, the new version is declared complete, a new row is inserted in
‘shake_version’ for version N+1, and the products are transferred to the world. The next time a
program in the sequence is run, it begins version N+2. And so on.

(In the situation where some programs were not run, the missing programs are inserted into the
‘shake_runs’ table with the new version number, but the date/time and flags of the previous
version. For example, we could run mapping, genex, and transfer, without ever re-running grind
(which is a valid thing to do – see the section on the Processing Sequence, above). When the new
version was set, the system would copy the flags and time/date of the previous run of grind, but
give it the new version number.)

By using this system, we have a complete record of the programs and their invocation flags for
each version of the event that we transferred to the world. In conjunction with the judicious use

 29

of the program ‘setversion’ (which will save a copy of the input data and the configuration files
for an event in a version-specific directory) we can recreate any version of an event. Here is the
a listing of a southern California event:

mysql> select program,flags from shake_runs where
evid='14007388' and version=4 order by lastrun;
+----------+--+
| program | flags |
+----------+--+
retrieve	
grind	-qtm -boundcheck
mapping	-timestamp -notchecked -tvmap -itopo
genex	-zip -metadata -shape shape
transfer	-www -ftp -push
+----------+--+
6 rows in set (0.01 sec)

By running these programs, with these flags, on the preserved input data and the preserved
configuration files, we could re-create version 4 of this event.

Keep in mind:
1) transfer sets a new version unless you tell it not to with -noversion.
2) Versions can be created by setversion. setversion will also delete, modify, or query the

version information for an event.
3) The default invocation of setversion (i.e., “setversion –event <event_id>”) does nothing. Use

the magnitude-dependent flags in ‘shake.conf’ to configure setversion to save the data for
significant events without filling your disks up with data from a lot of magnitude 3.5
earthquakes.

4) transfer has a -forget flag that will prevent its flags from being saved in the database. This is
useful for cancel, and pending, or if you are doing something unorthodox. grind also has a -
forget flag. All of the programs probably should.

End of Digression

The ‘shake_runs’ table has the following structure:

mysql> describe shake_runs;
+---------+-----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-----------+------+-----+---------+-------+
evid	char(80)		PRI		
program	char(80)		PRI		
lastrun	datetime	YES		NULL	
version	int(11)		PRI	0	
flags	char(255)				
+---------+-----------+------+-----+---------+-------+
5 rows in set (0.00 sec)

 30

Most of the columns are self-explanatory: the event id, the program name, the date/time of the
last run, the version, and the invoking flags (sans the ‘-event <event_id>’ and ‘-verbose’ flags).
Note that the primary key consists of (evid, program, version).

Version information is stored in the ‘shake_version’ table:

mysql> describe shake_version;
+---------+-----------+------+-----+---------+---------------+
| Field | Type | Null | Key | Default | Extra |
+---------+-----------+------+-----+---------+---------------+
evid	char(80)		PRI		
version	int(11)		PRI	NULL	auto_increment
lddate	datetime	YES		NULL	
comment	char(255)	YES		NULL	
+---------+-----------+------+-----+---------+---------------+
4 rows in set (0.00 sec)

The columns are obvious except for ‘comment.’ If the version was created by transfer, the
comment will be “Automatic call from within transfer.” If you use setversion to make the
version, you can give a comment on the command line explaining your intent.

3.5.3.4 Passwords and mydb.conf
The configuration line for MySQL access in mydb.conf will look something like this:

 database : mysql shakemap shake password

where you would substitute your database name for ‘shakemap’ and the username of the user
running ShakeMap for ‘shake.’ E.g., ‘jims_database’ and ‘jim’ if user jim is experimenting with
his own version of ShakeMap. See the section “Installing and Configuring MySQL” for
instructions on giving jim his own database. If you are running MySQL on a remote machine,
your config line will look something like this:

 database : mysql database=shakemap;host=machine.domain.org
shake password

In the password file (‘<shake_home>/pw/passwords,’ by default), you will need a line:

 shakemap shake <mysql_password_for_user_shake>

or, if you are using a remote database server:

 database=shakemap;host=machine.domain.org shake
<mysql_password_for_user_shake>

with the obvious substitutions to make it work in your environment (or jim’s). (Yes, the
“database=shakemap…)” bit looks wrong, but the password module is comparing strings with
what is found in “mydb.conf” and this is what is required to make it work.)

 31

3.5.3.5 Backing up the MySQL database
Because we are maintaining a database, and because what we keep in our database is important,
it is probably a good idea to do database backups on a regular basis. There are a number of ways
to do this with MySQL, including logging every transaction in a way that lets you recreate the
database after any failure. See the MySQL documentation for details if you would like to
implement a more robust backup system than is described here.

The mysqldump program allows one to dump one’s tables to a file as a set of SQL statements that
can then be used to recreate the tables. For example:

 % mysqldump --add-drop-table -u admin shakemap >
shakemap.sql

The file so created can then be used to restore the database (or to transfer the data to another
system):

 % mysql -u shake -p shakemap < shakemap.sql
 Password:

Note that the user names and database name may need to be changed on your system. Also note
that for mysqldump we use the ‘admin’ user that we created in the section “Installing and
Configuring MySQL”. This user does not need a password because its only SQL permission is
SELECT, however it is necessary to grant the shakemap user the ‘lock tables’ permission to do
the restore.

We have included a program ‘mysqlbu’ in the directory <shake_home>/util. This program
performs the database dump, compresses the output and, optionally, copies the output to another
machine for safekeeping. (The program contains hard-wired path and machine names, though, so
you will have to modify it for your system.) ‘mysqlbu’ can be run daily – it will create a different
file for each weekday. The program also prints an error summary that can be piped to a mail
program. We run it with a crontab entry that looks like this:

 0 2 * * * /home/shake/bin/mysqlbu | mail –t shake_admin

Which runs mysqlbu at 2:00 AM every day, and mails the status report to the user
‘shake_admin.’

3.5.4 Special Issues When Running ShakeMap

3.5.4.1 A Note About Program Flags
Since ShakeMaps are often generated (or regenerated) automatically, there needs to be some way
to preserve manual modifications. For instance, a certain event is run by the queue, and then the
operators decide that the scale should be larger, so they run the event manually, using the -
latspan flag to grind. If this information were not preserved, any subsequent automatic run of
that event would revert to the original settings. Thus, we created the “shake_runs” database table,
which keeps track of the parameters with which each program was last run. The program shake

 32

(and ONLY the program shake) reads that database and uses the flags found there when running
each of the subprograms.

This can result in confusing behavior. For instance, if you were to make some changes to the
web pages for a particular event, and then run transfer with only the -www flag (because only
web changes were made), the next run of shake on that event would run transfer with only the -
www flag, which would not update the ftp site or push to clients, which might lead to confusion.
Because transfer is often used this way, it has the -forget flag, which prevents it from updating
the shake_runs table for that run. shake has the -default_fl flag which causes shake to ignore the
“shake_runs” table and use the default flags for each sub-program as specified in the config file.
This flag is handy in combination with the -dryrun flag for determining the default behavior.

Please keep these facts in mind when you are manually running events.

3.5.4.2 Using User-supplied Estimates
V3.5 Note: In previous versions of ShakeMap, the user could supply ground motion estimates by
placing an XML file (of the ‘stationlist’ XML type) in the input directory. With version 3.5, we
have changed that facility to use GMT grid files, rather than XML.

grind, unless directed otherwise, will attempt to make estimates of ground motion (based on an
attenuation relation of your choosing). If one or more files called “<param>_estimates.grd” exist
in the “ShakeMap/data/<event_id>/input” directory, these estimates will be used instead of those
produced automatically by grind. The user-supplied estimate grid(s) should cover an area large
enough to completely enclose the area being mapped. The grid spacing need not be the same as
that used by grind because grind will resample it to the required grid spacing using GMT’s
grdsample program. For user grids coarser than those required by grind, bi-linear interpolation
will be used. Be aware, however, that for user grids finer than that used by grind, aliasing may
result from the down-sampling. (grind’s grid size is set within grind.conf.)

In a similar vein, if “*_sd.grd” files are present in the input directory, grind will assume they
contain the standard deviation of the estimates at each grid point. If no such files exist, grind
will use the configured GMPE to compute uncertainties for the user-supplied estimates. This is
almost certainly not what the user intends, so it is advisable to supply uncertainties
corresponding to the user-supplied estimates. If your standard deviations are constant across the
grid, it is a fairly easy matter to create the uncertainty grid for each parameter. For example, for
the PGA grid (assuming the std. for the PGA estimates is XXX.YYY):

 % grdmath pga_estimates.grd 0 MUL XXX.YYY ADD = pga_sd.grd

Finally, unless “*_estimates.grd” are in the input directory, grind will always recompute the
estimates (i.e., the files in the directory “<shake_home>/data/<event_id>/richter” are regenerated
with each run.) We do this because the input data could change (e.g. additional data arrives
(affecting bias) or the event magnitude is revised), and the estimates should reflect this fact.

 33

3.5.4.3 A Note About Estimates and Flagged Stations
grind will flag (i.e. cause not to be included in the maps) stations that appear to be outliers
(relative to the GMPE estimates). grind will put these flagged stations into a file in the
“ShakeMap/data/<event_id>/richter” directory called “flagged_stations.txt.” Even in cases
where the operator has supplied his or her own estimates (see previous section for details), grind
will still use the GMPE for the purpose of flagging outliers. The user can override this behavior
by placing a file “flagged_stations.txt” in the input directory. This file will be used in preference
to the GMPE-based flagging done by grind.

In summary, if the operator computes estimates via some external program and places them in
the input directory, grind will use them, but will flag outliers based on its own model. If the
operator is using a sophisticated finite fault model, he or she will probably want to compute his
or her own outliers and put them in a file “flagged_stations.txt” in the “input” directory, too.

3.5.4.4 A Note about Finite Faults
Events accept an optional finite fault file that will be used in generating estimates (for real events
or scenarios), and are plotted on the map (see the parameters ff_width and ff_color in the
configuration file mapping.conf for control of the way the fault is plotted). The fault filename
must end in “_fault.txt” and should be placed in the event’s input subdirectory.

The finite fault file is composed of a set of (latitude, longitude, depth) points defining the fault
trace or fault surface. (Disconnected segments and polygons should be separated by a line in the
file containing only the character ‘>’ (greater than).) For example, two points can define a
simple strike slip fault. A closed polygon (first and last points identical) can represent a fault
surface. Each fault is defined by a set of 4-point planar segments (quadrilaterals) joined by
common sides. The points should be arranged in clockwise- or counterclockwise order. Polygons
must have an odd number of points (minimum five points) such that each quadrilateral consists
of the points (n, n+1, (N-1)-n, N-n) for n = 1 to n = ((N-1)/2)-1, where N is the number of points
in the polygon. See Figure 1 for an example.

 34

Figure 1: Example of point ordering for a polygonal fault surface. The fault surface consists of
connected quadrilaterals. The first and last point of each segment should be the same (points 1
and 9 in the figure).

Each quadrilateral segment (i.e., 1278, 2367, 3456, in Figure 1) must have 4 corner points that
are coplanar and non-collinear. Multiple fault segments must connect in linear fashion as shown
in Figure 1; more degenerate configurations are not supported. One planar segment (4 points +
the first point repeated) or two connected planar segments should be sufficient for most cases.

ShakeMap computes distance-to-fault to each line segment or polygon in the fault and uses the
closest distance. ShakeMap modules may use either Joyner-Boore distance, or distance-to-
rupture. A point inside a closed polygon is considered to be at zero distance by the Joyner-Boore
function (as depth is ignored by this measure (though many GMPEs add a fitted pseudo-depth
term to the JB distance)). It is recommended that all faults be defined as polygons, even if your
normal GMPE uses JB distance. Polygonal faults allow the use of all GMPEs, as well as the
directivity function within grind. If the rupture depth is unknown, it can be estimated using
relations like those of Wells and Coppersmith (1994).

Note that to use the flag ‘-directivity’ with grind, a polygonal fault as described above is
required, regardless of the distance measure used by the chosen GMPE. For directivity, the first
three points of a quadrilateral will define the plane, and the fourth point will be mapped onto the
plane, as necessary. For example, in the middle segment of the fault in Figure 1, points 2, 3, and
6 will define a plane, and point 7 will be projected onto the plane in order to define the
quadrilateral. Similarly, the hypocenter will be projected onto the nearest plane. In both cases,
the projection is normal to the plane, not normal to the Earth’s surface.

The fault file should be formatted as the input of the GMT psxy command using the ‘-:’ flag (a '>'
header, followed by space-delimited latitude-longitude-depth triplets.) Note that the coordinate
ordering is the reverse of the conventional longitude-latitude paring.

Finally, the program genex transfers the fault files to the download directory so they are available
on the web site. The info.xml file contains the name(s) of the fault file(s) used in making the
maps.

Special note about faults in CY08: The CY08 GMPE module includes a hanging wall term for
reverse slip earthquakes. This term requires special fault treatment. Specifically, the first (N-
1)/2 points in the fault file (i.e., points 1, 2, 3, and 4 in Figure 1) are expected to be the shallow
points of the fault.

3.5.4.5 Directivity

The flag –directivity to grind applies the directivity functions of Rowshandel (2006, 2010) to the
amps predicted by the GMPE. The effect is limited to areas fairly close to the fault (especially
for everything other than 3.0-second PSA). In cases where the fault does not reach the surface,
the effect may not be noticeable at all. To use directivity, you must define a polygonal fault as
described in section 3.5.4.4.

 35

You can use -directivity with any GMPE, but the functions were developed for the four PEER-
NGA GMPEs. While it is probably reasonable to use directivity with other active tectonic
GMPEs, it is probably not applicable to other tectonic environments.

While it will function for any magnitude, Rowshandel does not endorse these functions for
earthquakes less than M6.0.

Except for the DefaultIPE, directivity is not applied to intensity. If you are using the DefaultIPE,
the directivity functions are applied to PGA and PGV before they are converted to intensity. We
hope to revisit this topic as soon as there is research describing the application of directivity to
intensity.

There is a new program called 'plotdirect'. If you run it ('plotdirect -event <evid>'), it will
produce contour plots of the directivity functions in .../data/<evid>/richter. (You must run grind
with the -directivity flag, first.) One figure is called dparam.jpg -- it is the directivity parameter
itself (i.e. the thing you get from Equation 3 in Rowshandel (2010)). The other figures are called
'direct_<param>.jpg' -- they are the directivity factors applied to the estimates themselves (i.e.,
the thing you get (after exponentiation) with Equation 9 of Rowshandel (2010)). All the figures
also have the fault and epicenter plotted.

3.5.4.6 Scenarios
ShakeMap supports the generation of earthquake scenarios. The user need only create the
appropriate “*_dat.xml,” “event.xml,” and (optionally) “*_estimates.grd,” “*_sd.grd,” and finite
fault files (see “A Note About Finite Faults,” below) in an input directory. The scenarios are
distinguished from real earthquakes in one of two ways: A) through the conscientious use of the -
scenario flag in the many ShakeMap programs (not recommended), or B) by ending the event id
with "_se" (e.g., event “myscenario_se” in directory “<shake_home>/data/myscenario_se/”)
(highly recommended).

Scenario earthquakes are distinguished from real ones by a staggering number of appearances of
the word "Scenario" on the maps and web pages, including a big one emblazoned across the face
of the maps themselves. We do this to prevent the misunderstandings in the press and public that
would likely occur if we were any less zealous. Scenarios have their own place on the archive
page, distinct from the real earthquakes, and they will not appear in the lists of real events or on
the homepage.

Most of the programs are scenario-savvy. ‘shakemail’, for instance will not email scenarios
unless you force it to. transfer will transfer to web sites (-www) and ftp sites (-ftp) but will not
push (-push) unless you force it to. Run the various programs with -help to learn the scenario-
related options and behavior.

To create a new scenario, the most straightforward way is:
1) Create a new event subdirectory (say, “<shake_home>/data/1857_se”) and a new “input/”

directory under that (“<shake_home>/data/1857_se/input”).

 36

2) Copy the “event.xml” file from an existing event over to the new input directory, and modify
the parameters. (Don't forget to change the ‘id’ field to be the same as your directory name
(e.g., 1857_se).)

3) Add a finite fault file, if desired (see “A Note About Finite Faults,” below).
4) Run 'shake -event event_id -dryrun' to get a listing of the programs to run and to check the

flags are correct. Make sure tag is run with ‘-scenario <scenario_description>.’ Then run the
programs in the order specified by shake.

The user may, additionally, create estimates using a non-ShakeMap program and include them in
the input. These estimate files should be GMT .grd files that cover at least the area being
mapped, and should be named like ‘<param>_estimates.grd’ where ‘<param>’ is ‘pga,’ ‘pgv,’
‘psa03,’ etc. There should also be .grd files containing the point-by-point uncertainty (given as
standard deviation), which should be named like ‘<param>_sd.grd.’ (If uncertainty is constant
over the grid, it is easy to make a .grd file using grdmath.)

3.5.4.7 Getting Help
You may contact us through the shake-dev mailing list:

 https://geohazards.usgs.gov/mailman/listinfo/shake-dev

This mailing list goes out to many ShakeMap operators and developers, but is a fairly low-traffic
list. Please sign up. We use this list not only to respond to questions, problems, and bug reports,
but also to announce software updates, bug fixes, etc.

Visit the site to add yourself to the list.

3.6 Common Problems
We welcome contributions to this section. Please let us know about problems you have had with
ShakeMap, and your workarounds (if any).

3.6.1 Shake flags database causes confusion
See section 3.5.4.1, A Note about Program Flags, above.

3.6.2 Files in incorrect format:
When configuring region-specific files, make sure to create files following the formats in the
example (i.e., southern California) files. If the code is written to read a space-delimited file,
commas will cause problems and vice versa. For the GMT files make sure you have the latitude
and longitude in the correct columns. Remember that files that define faults are in lat, lon, depth
order rather than the more conventional lon, lat, depth order.

 37

3.7 XML Formats in ShakeMap

3.7.1 About XML
XML is a system for tagging text to indicate the structure of information in the text. XML started
as a generalization of HTML (or a simplification of SGML, depending on your perspective), and
XML markup is similar in appearance to HTML tags. However, in XML the tags are defined on
a per-application basis. With this flexibility, XML can be used as a means of structuring data in a
cross-platform, human-readable form, in addition to its use handling textual documents.

A complete specification of XML is available at http://www.w3.org/TR/REC-xml
(http://www.w3.org/TR has a number of interesting documents) and an annotated version is at
http://www.xml.com/axml/axml.html.

However, preparing XML files for ShakeMap does not require knowing the XML specification.
For working with ShakeMap, it will probably be enough to get a short summary, in particular
contrasting XML with the more familiar HTML.

An XML file starts with a declaration line:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Version refers to the XML standard to which the file is written. Currently, “1.0” and “1.1” are
the only options, and we always use 1.0. Encoding refers to the character set in which the file is
written. Standalone indicates whether the XML file is free of references to outside definitions in
other XML files.

Following the declaration is an optional Document Type Definition (DTD) block, which may
refer to a definition in another file:

<!DOCTYPE earthquake SYSTEM "earthquake.dtd">

or present the definition in place:

<!DOCTYPE earthquake [
 ... DTD description ...
]>

The DTD system has been almost entirely supplanted by the use of XML Schemas, but we have
not yet adopted that approach for our input files, and it remains a low priority.

Then the XML itself starts. XML tags look a lot like HTML tags with a tag label and possibly
attributes:

<tag att1="val1" att2="val2">

 38

In contrast to HTML, XML tags and attributes are case sensitive, so <station> and <STATION>
are different. Also, attribute values must always be wrapped in quotes, so <station code="PAS">
rather than <station code=PAS>.

In HTML, some tags are simple tags that don't contain other tags or blocks of text. For example:

The equivalent in XML is called an empty tag, and only differs from HTML by closing with “/>”
rather than “>”:

<pga value="0.25"/>

Non-empty tags contain blocks of other tags and/or character data, such as:

<station code="PAS">
 <comp name="HLN">
 <acc value="0.25"/>
 </comp>
</station>

Example codes that demonstrate writing XML are available in the ShakeMap distribution
package (in <shake_home>/src/xml), and since XML files are text files this consists mainly of
simple printing of formatted output. For input, XML parsers are freely downloadable for the
Perl, C and Java programming languages. ShakeMap is predominantly written in Perl, so we use
a well-regarded parser library in that language. As with XML output, example codes in the
ShakeMap distribution show how input parsing is handled. A list of XML parser libraries in
various programming languages is available at http://www.w3.org/XML/#software.

Every XML file has a set of tags used in a pattern particular to that type of file. This pattern is set
by the developer and can be indicated in a Document Type Definition (or schema). The DTD
defines the tags that it expects, the order it expects them in, and how tags can nest within one
another. It also indicates what tags are optional, what tags can appear multiple times in
succession, what attributes are associated with each tag, and (optionally) a range of values
accepted for an attribute.

Some parsers have an option to 'validate' an XML file according to its DTD, but the parser used
by ShakeMap does not do so. However, we have found it useful to define DTD's for the various
XML file types that ShakeMap works with, if only for documentation purposes during
development. These ShakeMap DTD's will be discussed below for each file type. Again, this
approach should be revised to use formal schemas, but that approach will not change the basic
structure of the files.

3.7.2 ShakeMap XML Files
Before ShakeMap is run for a particular event (identified by an event id), the following set up is
needed:

o a directory in <shake_home>/data/<event_id>/input

 39

o an 'event.xml' file in this directory
o zero or more files with filenames ending in '_dat.xml' in this directory

The contents of the 'event.xml' file are earthquake parameters in the 'earthquake.dtd' format. This
format is a single, empty tag with a number of attributes of the earthquake. The attributes are
given in the following table.

Event information
id the event id
created file creation time (Unix epoch -- seconds since Jan 1, 1970)

Hypocenter information
lat latitude (in decimal degrees, negative in southern hemisphere)
lon longitude (in decimal degrees, negative in western hemisphere)
depth in km, positive down
locstring a free-form descriptive string of location relative to landmarks
mag magnitude
type a string specifying the rupture type; the accepted types are RS,

SS, NM, and ALL, for reverse slip, strike slip, normal, and
unspecified ruptures, respectively.

Origin time parameters
year 4 digit format
month 1-12
day 1-31
hour 0-23
minute 0-59
second 0-59
timezone abbreviation (i.e., GMT, PST, PDT)

Amplitudes at the epicenter
pga peak acceleration (units of %g)
pgv peak velocity (units of cm/s)
sp03 Spectral acceleration at 0.3 sec period (units of %g)
sp10 Spectral acceleration at 1.0 sec period (units of %g)
sp30 Spectral acceleration at 3.0 sec period (units of %g)

The amplitude attributes in 'earthquake.dtd' are estimates produced by ShakeMap during
processing. These attributes should be left out of the 'event.xml' file input to ShakeMap, and will
be ignored if present.

An example 'event.xml' file looks like:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE earthquake [
 ... DTD description ...
]>
<earthquake id="14000376" lat="34.2722" lon="-118.7530"
mag="3.6" year="2003" month="10" day="29" hour="23" minute="44"

 40

second="48" timezone="GMT" depth="13.81" locstring="2.6 mi W of
Simi Valley, CA" created="1069292035" />

Files in the input directory named like '*_dat.xml' are station parameters in the 'stationlist.dtd'
format. This format has a root 'stationlist' element containing one or more 'station' elements. The
'stationlist' can have a 'created' attribute with the file creation date in Unix epoch time (seconds
since Jan 1, 1970). Each station has a set of attributes:

code the station code
name station name and/or description
insttype description of instrument type
lat station latitude (in decimal degrees)
lon station longitude (with negative sign in western hemisphere)
source agency that maintains the station (i.e., SCSN, CDMG,

NSMP,...)
netid the network ID string; for MMI observations this must be one

of ‘MMI,’ ‘CIIM,’ ‘DYFI,’ or ‘INTENSITY.’
commtype digital or analog communications (DIG or ANA)
loc free form text describing the location of the station (optional)
intensity the intensity value of the observation (decimal)

Each station element contains one or more 'comp' elements, one for each component of ground
motion. Comp elements have the following attributes:

name a channel name/code in SEED convention
originalname the original channel name if it was not SEED (optional)

The name attribute may be a SEED-convention component name, or it may be a string describing
the source of the observation. If the name is not known (for example if the source of amplitudes
only gives a single summary value for the station), then use the most generic code for a
horizontal component, HL1. Use a horizontal code rather than HLZ because ShakeMap uses only
horizontal components in processing. In the ShakeMap output stationlist.xml file, ‘name’ may
also be “DERIVED” to indicate that the ground motions were derived from a primary intensity
observation.

If the amplitude is from an agency that does not use SEED component codes, you will have to
map their codes to a comparable SEED code for the name attribute. If you would like the original
code carried through the processing and used in the HTML, XML, and text stationlists, then put
the original code in the originalname attribute.

Each ‘comp’ element must contain one 'acc' element, and one 'vel' element, and may contain
‘psa03,’ ‘psa10,’ and ‘psa30’ elements (one of each). These refer to peak acceleration, velocity,
and 5%-damped pseduo-spectral acceleration (at 0.3, 1.0, and 3.0 sec period) values for the
named channel at the named station. The acc, vel, psa03, psa10, and psa30 elements are empty
but have the following attributes:

 41

value the amplitude value
flag flag indicating problematic data (optional)

The value attributes are expected to have units of:

acc %g (i.e., percent of the earth’s nominal gravitational acceleration)
vel cm/s (centimeters per second)
psa %g

The flag attribute indicates problematic data. Any value other than “0” (zero) or “” (i.e., an
empty string) will cause ShakeMap to reject the amplitude (and, in fact, all the amplitudes of that
type for that station). ShakeMap also does automatic flagging of outliers (see the program grind
and the section “Running ShakeMap,” above, for more information on automatic flagging).
Though any non-zero flag will kill an amplitude, the following flags are currently defined:

T Automatically flagged by ShakeMap as an outlier
M Manually flagged (in grind.conf) by the ShakeMap operator
G Amplitude clipped or below the instrument noise threshold
I Incomplete (a data gap existed in the time window used to calculate the amplitude)

An example of a '*_dat.xml' file is:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE stationlist [
 ... DTD description ...
]>
<stationlist created="1070030689">
<station code="ADO" name="Adelanto Receiving Station"
insttype="TriNet" lat="34.55046" lon="-117.43391" source="SCSN
and TriNet" commtype="DIG" netid=”CI” loc="Adelanto, on Hwy 395
">
<comp name="HHE">
<acc value="0.0083" flag="0" />
<vel value="0.0030" flag="0" />
<psa03 value="0.0146" flag="0" />
<psa10 value="0.0049" flag="0" />
<psa30 value="0.0003" flag="0" />
</comp>
<comp name="HHN">
<acc value="0.0088" flag="0" />
<vel value="0.0028" flag="0" />
<psa03 value="0.0111" flag="0" />
<psa10 value="0.0040" flag="0" />
<psa30 value="0.0004" flag="0" />
</comp>
<comp name="HHZ">
<acc value="0.0087" flag="0" />

 42

<vel value="0.0016" flag="0" />
<psa03 value="0.0080" flag="0" />
<psa10 value="0.0013" flag="0" />
<psa30 value="0.0002" flag="0" />
</comp>
</station>

… additional station tags (omitted)…

<station code="WSS" name="West Side Station" insttype="TriNet"
lat="34.1717" lon="-118.64971" source="SCSN and TriNet"
commtype="DIG" netid=”CI” loc="Hidden Hills, Valley Circle Dr.">
<comp name="HHE">
<acc value="0.0225" flag="0" />
<vel value="0.0031" flag="0" />
<psa03 value="0.0182" flag="0" />
<psa10 value="0.0016" flag="0" />
<psa30 value="0.0002" flag="0" />
</comp>
<comp name="HHN">
<acc value="0.0209" flag="0" />
<vel value="0.0029" flag="0" />
<psa03 value="0.0234" flag="0" />
<psa10 value="0.0019" flag="0" />
<psa30 value="0.0001" flag="0" />
</comp>
<comp name="HHZ">
<acc value="0.0187" flag="0" />
<vel value="0.0020" flag="0" />
<psa03 value="0.0073" flag="0" />
<psa10 value="0.0005" flag="0" />
<psa30 value="0.0000" flag="0" />
</comp>
</station>
</stationlist>

Intensity data uses the same format of input XML as other ground motion data, but uses two new
attributes to the station tag: the intensity attribute should be set to the decimal intensity for the
“station;” the netid attribute should be set to “MMI,” “CIIM,” “DYFI,” or “INTENSITY” (all
four are currently equivalent). If netid is set to one of these values, any amplitude data (i.e., data
enclosed in a comp tag) will be ignored and grind will use the mmi2pgm function to derive the
ground motions. Likewise, if netid is not one of these values, the intensity attribute will be
ignored and grind will compute intensity using the pgm2mmi function.

Below is an example of a station tag that contains intensity information:

<station code="91042" name="ZIP Code 91042 (Intensity VII, 38
responses)" insttype="USGS (Did You Feel It?)" lat="34.282604"

 43

lon="-118.237943" source="USGS (Did You Feel It?)" netid="CIIM"
commtype="USGS (Did You Feel It?)" intensity="7.4">

The earthquake and stationlist XML files are combined in the output file provided to the public.
This file is made available as XML and is also the basis for a raw, non-XML text stationlist and
the HTML web stationlist linked to the ShakeMap click-maps. Since the output XML file
combines the event and station files, it also merges the earthquke and stationlist DTD's into a
'shakemap_data' DTD that is included in the file.

3.7.3 Retrieving Data from a Database
As run by SCSN/CISN, ShakeMap is triggered by a realtime processing system and accesses a
database for event parameters and amplitude values from Caltech/USGS-Pasadena stations.
Additional amplitude values are received from CGS and NSMP stations and are incorporated in
the processing as they arrive. See the section “External Data XML Files,” below.

To access the database, ShakeMap launches retrieve which launches any number of specific
helper codes (defined in a configuration file) to build the “event.xml” and “*_dat.xml files.”
These codes can be used as examples of database access to build input files. If your network is
running a DBMS with the schemas used by the southern or northern California Earthquake Data
Centers, then you may be able to use the ShakeMap codes directly. If you are using a DBMS
with a different schema, it will be necessary to modify at least the SQL calls embedded within
the example programs and possibly the logic of the programs themselves if the schema
differences are large.

3.7.4 External Data XML Files
External (i.e., not directly from database) amplitudes can be included in ShakeMap once they are
associated with an earthquake. Just make a stationlist.dtd-format XML file with a unique name
ending in _dat.xml and drop it in the correct <event id>/input directory.

In order to associate amps, data need to be received in a structured way. One possibility is
defining an XML format. We have taken this approach with some external data, and the XML
format is described here as an example. In this case, the data arrive as amplitudes unassociated
with an earthquake. The main difference between the stationlist XML files fed directly to
ShakeMap and the external amplitude XML files is the addition of timing information (the basis
for the association). The root element of the external amplitude file is an ‘amplitudes’ element.
‘amplitudes’ has an ‘agency’ attribute so we can know who the amplitude report is from. The
amplitudes element contains one or more ‘record'’elements. The record element can have an
agency-defined ‘id’ attribute assigned to it.

The record element contains ‘timing’ and ‘station’ elements. The timing element has no
attributes but contains ‘reference’ and ‘trigger’ elements. The reference element has two
attributes, ‘zone’ for a timezone code (i.e., GMT, PST, or PDT) and ‘quality’ for an agency-
defined indicator of the timing quality. ‘reference’ contains a set of elements:

year 4-digit year
month 1-12

 44

day 1-31
hour 0-23
minute 0-59
second 0-59 (60 for leap second)
msec 0-999

each of which has an integer ‘value’ attribute as defined above. ‘trigger’ is an empty tag with a
‘value’ attribute assigned the time in seconds of the amplitude trigger relative to the reference
time. CGS has a common trigger time for all components in a record, so the trigger tag is not
stored at the component level.

The ‘station’ element has four attributes:

code station code
name station name or description
lat station latitude (in decimal degrees, negative in the southern hemisphere)
lon station longitude (in decimal degrees, negative in the western hemisphere)

and contains one or more ‘component’ elements. Each component has a ‘name’ attribute that
defines the component (in an agency-defined way), and contains ‘acc’, ‘vel’, and ‘sa’ elements.
Each of these elements has ‘value’ and ‘units’ attributes, where value is the amplitude value
itself, and units is a string expressing the units (i.e., g, or %g, or cm/s/s). ‘sa’ has an additional
attribute, ‘period’, that defines the period, in seconds, of the spectral value. For each component,
there is one acc, one, vel, and zero or more sa elements.

An example of an external amplitude XML file is:

<?xml version="1.0" encoding="US-ASCII" standalone="yes"?>
<amplitudes agency="CDMG">
 <record>
 <timing>
 <reference zone="GMT" quality="0.5">
 <year value="2000"/>
 <month value="02"/>
 <day value="21"/>
 <hour value=" 13"/>
 <minute value="49"/>
 <second value="0"/>
 <msec value="0"/>
 </reference>
 <trigger value="0"/>
 </timing>
 <station code="23920" lat="34.004" lon="-117.058"
name="Yucaipa Valley">
 <component name="Up">
 <acc value=" .013" units="g"/>
 <vel value=" .32" units="cm/s"/>

 45

 <sa period="0.3" value="0.01160" units="g"/>
 <sa period="1.0" value="0.00204" units="g"/>
 <sa period="3.0" value="0.00070" units="g"/>
 </component>
 <component name="90">
 <acc value=" .026" units="g"/>
 <vel value=" .63" units="cm/s"/>
 <sa period="0.3" value="0.02261" units="g"/>
 <sa period="1.0" value="0.00418" units="g"/>
 <sa period="3.0" value="0.00135" units="g"/>
 </component>
 <component name="360">
 <acc value=" .028" units="g"/>
 <vel value=" .58" units="cm/s"/>
 <sa period="0.3" value="0.02152" units="g"/>
 <sa period="1.0" value="0.00375" units="g"/>
 <sa period="3.0" value="0.00205" units="g"/>
 </component>
 </station>
 </record>
</amplitudes>

Example codes that parse this XML format and convert it to the ShakeMap input format are part
of the ‘dirwatch’ modules found in <shake_home>/src/watcherlib and
<shake_home>/src/cdmglib. In particular, see the module watcherlib/AssocAmp.pm.

3.8 Development Model
We are trying to handle ShakeMap development as an open-source project. That means that
various developers can contribute to the project the code that they feel improves the overall
product. This also means that those contributions must not be site-specific unless they are easily
bypassed by other users (through configuration options, for example). Changes, improvements,
additions, etc. will be sent back to the USGS, to be included in the distribution product (or to be
sent back to the originator for revision). If all goes smoothly, your site may make extensive
changes to the core product, send them back to the distribution source, have them integrated into
the code base, and then receive them back with the next release of the source. This should lead to
(relatively) painless upgrades, not to mention a better product for everyone.

None of this prevents a site from taking the code and running totally wild with it. It simply
means that their work will not be included in future releases and upgrades to the core ShakeMap
product.

3.9 Tables

Table 3.2A. Files and directories in the top-level of the ShakeMap distribution
Makefile The highest-level makefile in the distribution.
config Initially contains only a README file explaining how the configuration

files are formatted; once a ‘make’ is done, the directory will be populated

 46

with various config files for ShakeMap; these files will be edited by the
operator to meet region-specific needs.

doc Most of the ShakeMap documentation.
install The first stop when doing an install of a ShakeMap distribution; see

“Installing the Software,” above.
lib Contains mapping and data files, site correction data, web pages, web page

templates, and supporting graphics; see “Configuring ShakeMap,” above,
and sections below for more information.

src The directory where the ShakeMap source code and Perl modules live.
util Directory containing a few (occasionally) handy programs. It may be

safely ignored.

Table 3.2B. Subdirectories of Interest
src/cdmglib Contains perl modules that are used by dirwatch, the directory watching

program; these modules are used in the conversion of CGS (nee CDMG)
XML or CGS two-line parametric files into ShakeMap XML.

src/cfgsrc The source for the default configuration files; the installation process
copies these into <SHAKE_HOME>/config, then merges them with any
existing config files. The user then customizes them for a specific
environment.

src/config Contains the modules ShakeConfig.pm and WatcherConfig.pm which hold
global variables used by most of the ShakeMap programs; these modules
have site-specific customizations made to them and are installed in
<SHAKE_HOME>/lib by the program ‘config’ (also found in this
directory). No user intervention is required.

src/contour Contains the source to the ‘contour’ program. ‘contour’ converts GMT .grd
files into GIS shapefiles (polygons of “constant” parametric value). Also
in this (now-misnamed) directory are the sources for the
‘sm_nearneighbor’ and ‘dist_rrupt’ programs.

src/genexlib Directory with modules specific to the program genex.
src/lib Directory containing modules used by several of the ShakeMap programs;

most of these modules have (non-POD) documentation within them.
src/lib/GMPE Sub-directory containing the source code for various Ground Motion

Prediction Equations (typically named by author(s) and year: BJF97,
Youngs97, etc.)

src/lib/IPE Sub-directory containing the Intensity Prediction Equations. Named for
author(s) and year.

src/lib/GMICE Sub-directory containing the source of various PGM"Intensity (MMI)
conversion functions (Ground Motion/Intensity Conversion Equations).
Like the modules in the GMPE directory (above), these are typically
named for author and year (e.g., Wald99, for Wald et al., 1999).

src/misc Contains a couple of helpful programs: a perl version of ‘echo’ and the
infamous configconfig, the programs required by the MySQL conversion
of pre-V3.0 ShakeMap databases (mktables, eq2mysql, and shake2mysql),
and some other ad hoc programs.

 47

src/queue Contains the event queueing and automatic ShakeMap initiating program
used by the southern California network; individual sites will probably
want some custom variation of this program; see src/cfgsrc/queue.conf for
customization options; directory also contains the alarming and
cancellation scripts.

src/shake Contains the core of the ShakeMap software; most of these programs have
a configuration file (in src/cfgsrc) that explains how each may be
customized; see “Shake Programs” below for a discussion of the individual
programs.

src/util This directory holds programs to convert the ascii lat-lon-velocity file to
binary and back to ascii; see the section on configuring ShakeMap for
more information. Also in this directory are programs to create the
instrumental intensity scales for the II map and the TV map.

src/watcher Contains the dirwatch program; the dirwatch program and its associated
modules provide the service of watching a directory for the arrival of a file,
and then dispatching that file to its proper destination; see the description
of the modules in src/watcherlib, below; see the README in src/watcher
for a discussion of the program’s capabilities.

src/watchercfg Contains configuration files for the watcher modules.
src/watcherlib Currently contains two modules (three, actually, but Base.pm is general

purpose):
AmpDir.pm:
Takes the 2-line CDMG text parameter files as input, converts them to
unassociated XML, and deposits the new file in a user-specified directory.

AssocAmp.pm:
Takes the unassociated XML file, tries to associate it with a TriNet event,
converts the XML to ShakeMap XML, deposits this file in the input
directory for ShakeMap, and, after waiting a user-specified time, alarms
the queue that the event has been updated.

src/xml Contains various programs for converting data files and database results
into ShakeMap XML files. See Table 3.5, Miscellaneous Programs for
additional documentation.
This directory also contains the DTD files describing the earthquake and
stationlist XML formats.

lib/genex A collection of HTML and templates that, through the magic of the genex
program, become the ShakeMap products and web site.

lib/mapping Contains data files used by the mapping program: highways, faults, cities,
topography, colormap, etc. Much of the customization of ShakeMap
happens in this directory. See config/mapping.conf for more details.

lib/ps Contains the PostScript of the Instrumental Intensity scales for the intensity
map and the TV map.

lib/sitecorr Contains the station velocity file, the site amplification table, and the text
and binary versions of the geology file; review these files and create
versions specific to your region.

 48

lib/transfer Contains dummy files used by transfer when pushing data files to remote
sites.

lib/xml Holds the DTD’s for the ShakeMap XML; the DTD’s are prepended to the
earthquake and stationlist data files.

Table 3.2C Directories Created After Installation

bin All of the executable programs will end up here after a ‘make all.’
data Repository of all event data and processed files. Discussed below (“Data Directory

Structure”) and elsewhere.
pw (Actually, the name and location of this directory is user-defined); this is where

database passwords are kept; should be read protected for security; see the db.conf
configuration file and the Password.pm module (in src/lib) for examples of use.

perl Directory where the various perl modules end up after a ‘make all’; it is also
permissible to install other perl modules used by ShakeMap (e.g. DBI) here.

include Holds the macros used by makefiles and the config program.
logs Directory in which the queue puts its logging and error files.
watcher Host directory where the various directory watcher modules (dirwatch program)

look for config files and dump bits of information. May also hold the logs. This
directory can be ignored if you do not use the dirwatch program.

Table 3.3A. Region-Specific Files in ‘grind.conf’
Parameter: ampfactor_file
File: lib/sitecorr/[name].dat

File containing site amplification factors as a function of Vs30
and frequency of input ground motion. See the southern
California file site_corr_cdmg.dat for documentation and format.

Parameter: none
File: lib/sitecorr/[region].txt

Geology file. nx by ny (where dx=dy) rectangular grid of the
Vs30 values for the ShakeMap region. This file must be comma
delimited: lon, lat, Vs30 (where west longitude is negative).
This file is not strictly necessary but many regions have created
it as an intermediate step to creating the (now obsolete) .bin file.
See the next two entries, below, for more explanation.

Parameter: none
File: lib/sitecorr/[region].bin

Binary form of the above file. Now supplanted by a .grd file (see
the next entry, below). If you have this file but not its text
version (see previous entry), use qtmbin2latlon to generate the
text from this file.

Parameter: qtm_file
File: lib/sitecorr/
[region].grd

A GMT .grd file of VS30 over the entire region of interest (plus
any buffering you wish to add). You may generate this file in
any number of ways, but it can be generated from the .txt file,
above, with a command like:
xyz2grd -R<WESN of region> -I60c usgs_vs30_60s.txt
-Gusgs_vs30_60s.grd
See the GMT documentation for more information about .grd
files.

Parameter: mmifactor_file
File: lib/sitecorr/[region]

The basename of GMT CPT files containing forward and reverse
site corrections for MMI. See grind.conf for information on
creating these files.

 49

Parameter: stavel_file
File: lib/sitecorr/
dig_[region].txt

File containing station information: lat, lon, sta name, Vs30;
stations not found in this file will be assigned the Vs30 of the
nearest grid point from the geology file, above. This may be the
same file that is given as fwstatlist, below.

Parameter: fwstatlist
File: lib/grind/
[region]statlist.txt

List of stations used by the -scenario option (to grind) to create
dig_dat.xml by forward modeling.

Table 3.3B. Region-Specific Files in ‘mapping.conf’
Parameter: topo_cmap
File: lib/mapping/
[region].cpt

GMT colormap file for plotting regional topography; the default
file ‘tan.cpt’ may work for many regions, but you can use any
colormap you find appropriate.

Parameter: ii_cmap
File: lib/mapping/
[region].cpt

This GMT colormap converts intensity (MMI) into a color. We
suggest using the default “Ii.cpt” unless we all reach consensus
that it needs to be changed. If it is changed, note that the scale
at the bottom of the intensity maps will need to be changed, as
well.

Parameter: ii_tvmap_cmap
File: lib/mapping/
[region].cpt

Like ii_cmap above, this colormap is used to convert intensity
into a color, but for the maps intended for broadcast TV (which
have limits on the colors they can broadcast). This has turned
out to be of limited use, and we currently us a colormap that is
identical to the one we use for ii_cmap.

Parameter: sd_cmap
File: lib/mapping/
[region].cpt

Another GMT colormap. This one converts the uncertainty
(expressed as the ratio of site standard deviation to the GMPE
standard deviation) into a color.

Parameter: map_roads
File: lib/mapping/
[region]_roads.xy

Text file containing GMT psxy-style coordinates of road
segments: lon, lat pairs grouped by segment , segments
separated by a ‘>’.

Parameter: map_faults
File: lib/mapping/
[region]_faults.xy

Text file containing GMT psxy-style coordinates of fault
segments: lon, lat pairs grouped by segment, segments
separated by a ‘>’.

Parameter: map_topo and
map_topo_hires
File: lib/mapping/
[region]_topo.grd

GMT grid file for the regional topography. Optionally, you can
have both high and low resolution forms. Note, these files are
not the topography files used by ‘topo2grd’ (defined in
grind.conf).

Parameter: topo_intensity
and topo_intensity_hires
File: lib/mapping/
[region]_topo_intens.grd

GMT grid file of intensity* for the regional topography grid
given above. If this file (or the high resolution version) does not
exist, the mapping program will generate it. *Note this is not
ground motion intensity, but plotting intensity as produced by
grdgradient from specifying the position of a light source.

 50

Parameter: map_cities,
map_bigcities, and
map_verybigcities
File: lib/mapping/
[region]_cities.txt,
[region]_bigcities.txt , and
[region]_verybigcities.txt

Files containing city names and locations. The use of these files
is now deprecated; use the ‘_label’ versions instead. See
‘mapping.conf’ for more details. A program ‘fix_cities’ is
provided to convert old city files to new ones; read the program
source for documentation.

Parameter: none
File: lib/mapping/
tvguide.txt

Optional, edit this file to reflect local contact information.

Table 3.3C. ShakeMap Programs
shake Config: shake.conf

The main program; actually a wrapper program that calls the other
programs. The configuration file controls what programs shake calls and
how they are called. After shake calls the first program in the list (usually
retrieve, see below), it expects a file, “event.xml,” in the event’s input
directory.

retrieve Config: retrieve.conf
Usually the first program called by shake; retrieve is itself a wrapper code
that calls other programs that are meant to retrieve data and put it in the
event’s input directory; the configuration file explains the customization
options.

pending Sends a new home page to the web site to indicate that an event is being
processed; pending calls genex with the -pending flag, and transfer.

grind Config: grind.conf
grind reads the data files it finds in the event’s input directory and generates
grid files with interpolated ground motions, as well as the text and XML
parameter files, and the station and uncertainty files. grind puts its output in
a directory called ‘<shake_home>/data/<event_id>/output.’

tag ShakeMap keeps an earthquake database that it uses to generate the home
page and the archive pages; tag specifies to the database that an event is a)
ordinary, b) a mainshock, c) an historic, named, event, d) invisible (on the
web pages), or e) part of an aftershock cluster associated with a mainshock.

mapping Config: mapping.conf, colors.conf
Reads the grids generated by grind and makes PostScript maps of ground
motion and shaking intensity, contour files, and generates information
needed to make imagemaps; all of this output is placed in the event’s
‘mapping’ directory.

asciimap Obsolete. Removed in V3.5.
genex Config: genex.conf, web.conf

Uses the output of grind and mapping to create JPEGs, build web pages,
and generate GIS and other files for export via the web or FTP.

 51

shakemail Config: shakemail.conf
Generates a number of different email notifications of ShakeMap
availability (long format, short format, attached JPEG, and list of flagged
stations). See shakemail.conf for details.

addon Config: addon.conf
Creates and copies a QDDS-formatted file to a local QDDS directory;
QDDS should then add a link to the just-created ShakeMap from the
Simpson maps. Will also send a delete message for cancelled events.

print Config: print.conf
Sends plots to printers.

transfer Config: transfer.conf
Transfers the output created by genex to the web and ftp sites, also ‘pushes’
ShakeMap data to remote sites via FTP. transfer has been pirated for other
uses as well: it is used to transfer the permanent parts of the web pages to
the web site(s), and it transfers a temporary ‘pending’ page to the web while
an event is being processed. Unless instructed otherwise, transfer cements
a version of an event’s maps and causes subsequent maps to have an
incremented version number.

setversion Manipulates the version information for an event and preserves versions as
requested. Run setversion –help for more information. Also, see the section
on version control in this manual.

plotdirect Config: genex.conf
If grind was run with the flag –directivity, this program will create plots in
the richter sub-directory of the directivity parameter and the directivity
factors for each of the ground motion types (called dparam.jpg and
direct_<param>.jpg, respectively.

plotregr Config: mapping.conf, genex.conf
Creates plots of the PGM and intensity attenuation (from the GMPE or
IPE), both biased and unbiased, with the amplitudes from the stations. Also
plots lines indicating the standard deviation bounds used for flagging. The
plots are found in the event’s data directory in the sub-directory regression.
There are PostScript, PDF, and PNG versions of each plot. Note that
because of the complex way distance and standard deviation are treated by
ShakeMap and some GMPEs, some flagged stations may appear within the
std. bounds, and unflagged stations may appear outside them.

cancel Config: shake.conf
cancel undoes the effect of shake: it removes the event (except what is
found in the input directory) from the data directory and removes the event
from the earthquake database; it removes the web pages for the event and
updates the home and archive pages to reflect the removal of the event; it
deletes all associated data from the ftp site(s) and it pushes a file,
‘<event_id>.cancel,’ to push clients

unlock If an event is locked, preventing the execution of ShakeMap programs, this
program will break the lock.

 52

dist_rrupt A helper program for grind. Given a 3-D fault description and a list of
points, computes the closest distance from each point to the fault rupture
plane. Implemented in C for efficiency.

sm_nearneighbor Another helper program for grind. Based on GMT’s nearneighbor
program, this program computes a weighted average of nearby data points
for each point in a grid. Implemented in C for efficiency.

geterror Another helper program for grind. Computes the letter grade and
uncertainty score for the grids produced by grind, following the method of
Wald, et al. (2008).

topo2grd A helper program for grind. Converts digital elevation models into Vs30
grids suitable for use by grind when running with the -qtm flag. This
program is only likely to be of use within the Global ShakeMap program --
most operators will want to produce static Vs30 grids for their geographic
area.

view_rcg If grind is run with the -rcg flag, it will produce Relative Contribution Grids
within the event’s richter directory. view_rcg converts those grids into
PostScript maps and leaves them in the richter directory.

plot_vs30 Plots the Vs30 grid used by grind. This program may be configured in
shake.conf to run automatically. It is generally intended for use where the
Vs30 grid is not static, but is constructed on the fly (see topo2grd, above).

zone_config Allows the selection of region-specific configuration files. zone_config
reads box definitions just like queue and looks for "[config*].boxname"
files in the zone directory (within <shake_home>/config) then copies them
into event-specific config directory. The operator may define boxes in the
zone_config.conf file then place specific config files into the zone
directories. The default zone_config config file contains most region/craton
boundaries.
*Where “config” one or more program configuration files (e.g., grind.conf,
mapping.conf, etc.

fix_cities A now-obsolete file that was used to convert old-style city files to new-style
city files in a previous release. Remains in the distribution mostly as a
reference.

getnsmp A program used to associate unassociated NSMP data with an event, then
call nsmp2xml to generate an NSMP data file in the event’s input directory.
Not generally useful, but remains as a reference.

 53

iiscale
tvscale

These programs use the formulae of the various GMICE functions to
generate a bit of PostScript that makes the intensity scale at the bottom of
the intensity plots. These programs are run when ShakeMap is installed and
put the PostScript in files in <shake_home>/lib/ps. The conversion
modules in GMICE contain a function that returns the name of the correct
PostScript file to use with that module, which grind extracts in puts in an
info file for mapping. iiscale should be run like: % iiscale <GMICE>,
where <GMICE> is replace with the name of one of the modules (“Wald99”
or “AK07”, for example). The output file will be named like:
scale_<lc(GMICE)>.ps, where <lc(GMICE)> is the lower case name of the
GMICE used (e.g., Wald99 generates file scale_wald99.ps, and AK07
generates scale_ak07.ps). tvscale produces a simpler, more generic scalebar
that does not depend on the specifics of the GMICE used.

Table 3.4 Subdirectories Found Within an Event Data Directory
input Directory in which the input XML file or files are placed. The operator may also

include a finite fault file, estimates/uncertainty files, and flagged station files into
this directory.

output Directory in which grind places its output.
richter Another directory that contains output from grind. The estimate grid and flagged

stations files are written here if grind is called upon to generate them. Grind also
writes files to this directory that plotregr uses.

mapping This directory will contain PostScript files generated by mapping, and JPEG files
converted from the PostScript by genex; also contains contour files, the ASCII
map, and other miscellaneous mapping products.

genex This directory contains products ready for transfer to the web and ftp sites. It
contains two sub-directories ‘web’ and ‘ftp.’ Each of these contains files set up
in a directory structure that lends itself to being copied wholesale to its
destination.

raw This directory is not created by the ShakeMap software, but may be created by
the user; it is a holding area for input data that is not in the proper XML format.
Some programs (dig2xml, ana2xml, hist2xml, etc.) look in this directory for
event-specific input which they convert to XML and place in the ‘input’
directory.

config This directory may also be manually created by the operator to hold one or more
event-specific configuration files. The ShakeMap programs look first to their
command line for a user-specified configuration file, followed by a search of this
directory. If neither is specified, the programs default to the configuration files
found in <shake_home>/config.

save Within this directory are subdirectories representing the version number of saved
events. This directory will only exist if at least one version of an event has been
saved with setversion.

regression Exists only if plotregr is run. Contains the plots produced by that program.

 54

Table 3.5 Miscellaneous Programs
src/xml/eq2xml Probes the CISN database for information specific to a numbered event

then writes an XML file in the event input directory describing the event.
src/xml/db2xml Queries the CISN database for event-specific amplitudes then writes the

appropriate XML.
src/xml/…
ana2xml
cdmg2xml
csvnsmp2xml
dig2xml
hist2xml
nsmp2xml
scenario2xml

These programs take various formats of text data files and convert them to
ShakeMap XML input. Most of them are no longer in use, but we leave
them in the distribution to provide examples for operators to use in creating
their own conversion programs.

src/xml…
ciimcdi2xml
ciimuscdi2xml
knet2xml
obs2xml

These programs access the CIIM (a.k.a. “Did You Feel It?”) or other
Intensity data files and produce XML data files containing intensity values.
These programs are used at the NEIC for national and global ShakeMaps,
but may serve as examples for operators who collect their own intensity
data.

src/xml/cube2xml Reads a CUBE-format earthquake file and generates an XML file in the
event’s input directory conforming to the earthquake.dtd spec.

src/xml…
jbest2xml
richt2xml

Take the programmatic output from estimate-generating programs and
produces XML in the stationlist format. These programs produce a grid of
estimates that was used in pre-3.5 grind. They are now obsolete.

3.10 References

Allen, T.I. & Wald, D.J., (2009). On the use of high-resolution topographic data as a proxy for

seismic site conditions (vs30), Bull. Seism. Soc. Am., 99, 935–943.

Allen, T. I., Wald, D. J., and Worden, C. B. (2012). Intensity Attenuation for active crustal

regions, J. Seismol., 16(3), 409-433.

Akkar, S., and J. J. Bommer (2007). Empirical Prediction Equations for Peak Ground Velocity

Derived from Strong-Motion Records from Europe and the Middle East, Bull. Seism. Soc.
Am., 97(2), 511-530.

Akkar, S., and J. J. Bommer (2007b). Prediction of elastic displacement response spectra in

Europe and the Middle East, Earthquake Engng. Struct. Dyn., 36, 1275-1301.

Atkinson, G. M., and D. M. Boore (2006). Earthquake Ground-Motion Prediction Equations for

Eastern North America, Bull. Seism. Soc. Am., 96(6), 2181-2205.

Atkinson, G. M., and D. M. Boore (2011). Modifications to Existing Ground-Motion Prediction

Equations in Light of New Data, Bull. Seism. Soc. Am., 101(3), 1121-1135.

 55

Atkinson, G. M., and S. I. Kaka (2007). Relationships between Felt Intensity and Instrumental
Ground Motion in the Central United States and California, Bull. Seism. Soc. Am., 97, 497-
510.

Atkinson, G. M., and D. J. Wald (2007). "Did You Feel It?" intensity data: A surprisingly good

measure of earthquake ground motion, Seism. Res. Lett. 78, 362-368.

Boatwright, J., H. Bundock, J. Leutgert, L. Seekins, L. Gee, P. Lombard (2003). The

Dependence of PGA and PGV on Distance and Magnitude Inferred from Northern
California ShakeMap Data, Bull. Seism. Soc. Am., 93(5), 2043-2055.

Boore, D. M., W. B. Joyner, and T. E. Fumal (1997). Equations for estimating horizontal

response spectra and peak acceleration from western North American earthquakes: A
summary of recent work, Seismol. Res. Lett. 68, 128–153.

Boore, D. M., and G. M. Atkinson (2008). Ground-Motion Prediction Equations for the Average

Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between
0.01 s and 10.0 s. Earthquake Spectra, 24(1), 99-138.

Borcherdt, R. D. (1994). Estimates of Site-Dependent Response Spectra for Design

(Methodology and Justification), Earthquake Spectra, 10(4), 617-653.

Campbell, K. W. (2003). Prediction of Strong Ground Motion Using the Hybrid Empirical

Method and Its Use in the Development of Ground-Motion (Attenuation) Relations in
Eastern North America, Bull. Seism. Soc. Am., 93(2), 1012-1033.

Chiou, B. S.-J., and R. R. Youngs, Abrahamson, N., and Addo, K. (2010). Ground-Motion

Attenuation Model for Small-To-Moderate Shallow Crustal Earthquakes in California and
Its Implications on Regionalization of Ground- Motion Prediction Models, Earthquake
Spectra, 26(4).

Chiou, B. S.-J., and R. R. Youngs (2008). An NGA Model of the Average Horizontal

Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 24(1), 173-
215.

Dangkua, D. T. and C. H. Cramer (2011). Felt Intensity Versus Instrumental Ground Motion: A

Difference between California and Eastern North America?, Bull. Seism. Soc. Am., 101(4),
1847-1858.

Faenza, L. and Michelini, A. (2010). Regression analysis of MCS Intensity and ground motion

parameters in Italy and its application in ShakeMap, Geophys. J. Int., 180, 1138-1152.

Kanno, T., A. Narita, N. Morikawa, H. Fujiwara, and Y. Fukushima (2006). A New Attenuation

Relation for Strong Ground Motion in Japan Based on Recorded Data, Bull. Seism. Soc.
Am., 96(3), 879-897.

 56

Garcia, D., S. Singh, M. Herraiz, M. Ordaz, J. Pacheco (2005). Inslab Earthquakes of Central
Mexico: Peak Ground-Motion Parameters and Response Spectra, Bull. Seism. Soc. Am.,
95(6), 2272-2282.

Motazedian, D., and G. Atkinson (2005). Ground-motion relations for Puerto Rico, Geol. Soc.

Am. Special Papers, 385, 61-80.

Pankow, K. L., and J. C. Pechmann (2004). The SEA99 Ground-Motion Predictive Relations for

Extensional Tectonic Regimes: Revisions and a New Peak Ground Velocity Rerlation, Bull.
Seism. Soc. Am., 94(1), 341-348.

Rowshandel, B. 2006. Incorporating Source Rupture Characteristics into Ground-Motion Hazard

Analysis Models, Seism. Res. Lett., 77, No. 6, 708-722.

Rowshandel, B. 2010. Directivity Correction for the Next Generation Attenuation (NGA)

Relations, Earthquake Spectra, 26, No. 2, 525-559.

Wald, D. J., V. Quitoriano, T. H. Heaton, H. Kanamori (1999b), Relationships between Peak

Ground Acceleration, Peak Ground Velocity and Modified Mercalli Intensity in California,
Earthquake Spectra, 15, 557-564.

Worden, C.B., M.C. Gerstenberger, D.A. Rhoades, and D.J. Wald (2012). Probabilistic

Relationships Between Ground-Motion Parameters and Modified Mercalli Intensity in
California, Bull. Seism. Soc. Am., 102(1), 204-221.

Youngs, R. R., S.-J. Chiou, W. J. Silva, J.R. Humphrey (1997). Strong Ground Motion

Attenuation Relationships for Subduction Zone Earthquakes, Seism. Res. Lett., 68(1), 58-
73.

Zhao, J. X., J. Zhang, A. Asano, Y. Ohno, T. Oouchi, T. Takahashi, H. Ogawa, K. Irikura, H. K.

Thio, P. G. Somerville, Y. Fukushima, and Y. Fukushima (2006). Attenuation Relations of
Strong Ground Motion in Japan Using Site Classification Based on Predominant Period,
Bull. Seism. Soc. Am., 96(3), 898-913.

